Engineering Mechanics

PEN-Drive / G-Drive Course & LIVE Classroom Program

Workbook

Civil Engineering
Mechanical Engineering

Sr.	Chapter	Pages
1.	System of Forces (FBD and Equilibrium of Forces)	1
2.	Plane Trusses	8
3.	Friction	12
4.	Centroid and MOI	15
5.	Kinematics and Kinetics of Particles	17
6.	Work and Energy Principle	21
7.	Impulse and Momentum	25
8.	Impact and Collision	27
9.	Kinematics and Kinetics of Rigid Body	29

System of Forces (FBD and Equilibrium of Forces) 1 Fundamental of Engineering Mechanics (Part1) 0:3	5:28 32:07 9:18 7:13
1 Fundamental of Engineering Mechanics (Part1) 0:3	9:18
	9:18
2 Fundamental of Engineering Mechanics (Part 2)	
2 Fundamental of Engineering Mechanics (Fart2)	7:13
3 System of Forces (Part1) 0:1	
4 System of Forces (Part2) 0:2	8:55
5 FBD and Types of Supports 0:1	4:59
6 Workbook Questions 4-6 0:1	5:41
7 Lami's Theorem 0:0	7:36
8 Reactions in Beams 0:4	7:08
9 Workbook Questions 7-10 0:3	2:12
10 Workbook Questions 11-15 0:2	:3:57
11 Workbook Questions 16-20 0:2	9:28
Plane Trusses	
1 Introduction to Trusses 0:1	.4:59
2 Method of Joints 0:2	6:15
3 Special Cases 0:1	2:17
4 Method of Section 0:1	.8:23
5 Workbook Questions 1-3 0:1	.8:28
6 Workbook Questions 4-8 0:2	2:11
7 Workbook Questions 9-12 0:2	2:57
Friction	
1 Introduction to Friction 0:5	7:14
2 Application of Friction 0:3	8:29
3 Workbook Questions 1-5 0:2	:5:59
4 Workbook Questions 6-9 0:3	0:22
5 Workbook Questions 10-12 0:0	8:58
Centroid and MOI	
1 Introduction to Centroid and Centre of Graviety 0:3	3:19
2 Introduction to Moment of Inertia 0:3	0:21
3 Moment of Inertia for Different Shapes 0:2	2:25
4 Analysis of MOI 0:0	9:36
5 Question based on MOI 0:1	.6:23
6 Product of Inertia 0:2	0:35
7 Mass MOI 0:2	0:00

	tics and Kinetics of Particles	T
1	String Constraint Motion	0:47:43
2	Kinematics of Particles and Questions Part1	0:30:21
3	Kinematics of Particles and Questions Part2	0:31:00
4	Rectilinear Motion of Particles	0:19:14
5	Curvilinear Motion of Particles	0:37:45
6	Projectile Motion	0:06:14
7	Workbook Questions 1-4	0:26:46
8	Workbook Questions 5-7	0:21:53
9	Workbook Questions 8-12	0:27:56
Nork a	nd Energy Principle	
1	Introduction to Work and Energy	0:29:49
2	Work and Energy Principle	0:19:23
3	Question on Work Energy Principle Part1	0:23:17
4	Question on Work Energy Principle Part2	0:21:15
5	Question on Work Energy Principle Part3	0:24:36
6	Workbook Questions 1-5	0:29:52
7	Workbook Questions 6-9	0:15:45
mpulse	and Momentum	
1	Introduction to Impulse and Momentum	0:21:28
2	Questions Based on Impulse and Momentum Part1	0:30:04
3	Questions Based on Impulse and Momentum Part2	0:45:07
4	Angular Momentum	0:28:25
5	Workbook Questions 1-4	0:24:42
mpact	and Collision	,
1	Introduction to Impact and Collision Part1	0:29:51
2	Introduction to Impact and Collision Part2	0:24:34
3	Questions on Impact and Collision	0:34:48
4	Oblique Impact	0:24:15
5	Workbook Questions 1-8	0:35:10
Kinema	tics and Kinetics of Rigid Body	-
1	Introduction to Kinetics in Rigid Body	0:28:19
2	Introduction to Kinematics of Rigid body	0:30:50
3	Workbook Questions 1-11	0:40:19
4	Workbook Questions 12-17	0:25:05
Principl	e of Virtual Work	'
1	Principle of Virtual Work	0:28:12
2	Questions on Principle of Virtual Work Part 1	0:35:06
3	Questions on Principle of Virtual Work Part 2	0:23:24
Quick R	evision of Engineering Mechanics	1:13:00

Environmental Engineering

PEN-Drive / G-Drive Course & LIVE Classroom Program

Workbook

Civil Engineering

Sr.	Chapter	Pages
1.	Water Demand, Population Forecasting, Sources of Water	1
2.	Quality Parameters of Water	5
3.	Treatment of Water	13
4.	Distribution and Conveyance System	26
5.	Waste Water Characteristics	30
6.	Sewage System & Sewer Appurtenances	35
7.	Treatment of Sewage	39
8.	Disposal of Sewage Effluent	51
9.	Solid Waste Management	54
10.	Air Pollution	59
11.	Noise Pollution	66

Sr.	Lecture Name	Duration
0	Motivation and Guidance	0:24:25
Water D	emand, Population Forecasting, Sources of Water	
1	Rate of Demand, Types of Demand, Per Capita Consumption Factors	0:37:23
2	Fire Demand	0:10:13
3	Variation in Demand (Maximum Daily Demand, Maximum Hourly Demand)	0:33:45
4	Workbook Question Number 1 and 2	0:17:11
5	Population Forecasting Methods - Arithmetic Increase Method	0:28:40
6	Geometric Increase Method	0:20:12
7	Incremental Increase Method	0:11:59
8	Logistic Curve Method & Decreasing Rate Of Growth Method	0:32:02
9	Simple Graphical Method, Comparative Study Graphical Method, Master Plan Method	0:17:19
10	Sources Of Water - Surface Sources	0:31:16
11	Sources Of Water-Subsurface Sources	0:23:05
12	Workbook Question Number 7, 8 and 9	0:10:14
Quality F	arameters of Water	
1	Quality of Water (Physical Parameters)	0:54:09
2	Workbook Question Number 1, 2 and 3	0:06:54
3	Quality of Water(Chemical Parameters) Part 1	0:56:25
4	Workbook Question Number 4 to 8 & Assignment Question Number 1	0:28:03
5	Quality of Water (Chemical Parameters) Part 2	0:46:29
6	Workbook Question Number 9 to 17	0:43:41
7	Quality Of Water (Biological Parameters)	0:50:48
8	Workbook Question Number 18 and 19 & Assignment Question Number 2	0:19:21
Treatme	nt of Water	
1	Treatment of Water-Screening, Aeration	0:47:28
2	Sedimentation	0:42:46
3	Plain Sedimentation Horizontal Flow Type Tank	1:09:51
4	Workbook Question Number 2 to 8	0:37:35
5	Vertical Flow Type Tank	0:18:52
6	Workbook Question Number 9 and 31	0:09:06
7	Sedimentation Aided with Coagulation	0:34:06
8	Types Of Coagulants	0:22:33
9	Alum	0:45:38
10	Workbook Question Number 10, 32 and 33	0:29:58
11	Clariflocculator	0:43:33
12	Workbook Question Number 11 to 15	0:19:30
13	Filtration	0:23:18
14	Slow Sand Gravity Filter	0:19:21
15	Rapid Sand Gravity Filter	0:56:45
16	Workbook Question Number 16-20	0:21:10

17	Workbook Question Number 21-23 & 30	0:37:47
18	Pressure Filter	0:51:53
19	Disinfection - Types Of Disinfectants	0:52:03
20	Chlorination	0:30:10
21	Workbook Question Number 23 to 29	0:41:08
22	Workbook Assignment Question Number 4 and 5	0:11:09
23	Types of Chlorination	1:01:09
24	Water Softening	1:02:29
25	Desalination, Defluoridation	0:40:58
26	Workbook Question Number 34 and 35	0:24:26
Distributi	on and Conveyance System	
1	Layout Of Distribution Networks	0:55:23
2	Methods of Distribution, Types of Distribution Reservoirs	0:29:33
3	Storage Capacity of Distribution Reservoirs	0:24:38
4	Workbook Assignment Question Number 1	0:17:06
5	Detection of Leaks in Underground Distribution Pipes	0:14:05
6	Pipe Appurtenances	0:31:28
7	Workbook Question Number 3 to 7	0:09:51
8	Analysis Of Complex Pipe Networks	0:18:33
9	Workbook Assignment Question Number 2	0:29:33
Waste Wa	ater Characteristics	
1	Physical Characteristics of Waste water	0:25:29
2	Chemical Characteristics of Waste Water	0:43:49
3	Dissolved Oxygen, Chemical Oxygen Demand, Theoretical Oxygen Demand, Total Organic Carbon	0:22:50
4	Biochemical Oxygen Demand	0:50:22
5	Workbook Question Number 2 to 4	0:26:04
6	Workbook Question Number 5 to 11	0:29:41
7	Workbook Question Number 12 to 15	0:17:20
8	Population Equivalent & Relative Stability	0:12:36
9	Workbook Question Number 16 to 19	0:15:42
Sewage S	ystem & Sewer Appurtenances	
1	Important Definitions & Sewerage System	0:46:05
2	Designing of Sewage System	0:48:45
3	Self Cleansing Velocity & Partial flow Characteristics of Circular Sewer (Part 1)	0:18:23
4	Partial flow Characteristics in Circular Sewer (Half Full) Part 2	0:32:29
5	Workbook Question Number 1 to 6	0:36:21
6	Workbook Assignment Question Number 1 and 2	0:35:33
7	Workbook Assignment Question Number 3 and 4	0:25:27
8	Workbook Assignment Question Number 5 to 7	0:31:07
9	Shapes of Sewer Pipes	0:19:42
10	Sewer Appurtenances	0:44:31
Treatmen	at of Sewage	
1	Introduction To Sewage Treatment	0:30:14
2	Screening	0:32:07

3	Grit Chamber	0:24:57
4	Workbook Assignment Question Number 2 and 3	0:23:37
5	Skimming Tanks	0:15:15
6	Primary Sedimentation Tank	0:20:09
7	Secondary Treatment of Sewage	0:28:15
8	Trickling Filters	0:29:07
9	Operational Troubles In Trickling Filters	0:17:34
10	High Rate Trickling Filters	0:14:35
11	Design Considerations & Design Steps Of Trickling Filters	0:20:48
12	Workbook Assignment Question Number 1 and 2	0:29:45
13	Workbook Assignment Question Number 3	0:20:58
14	Activated Sludge Process	0:38:29
15	Design Considerations in Activated Sludge Process	0:44:13
16	Short Notes	0:21:24
17	Workbook Question Number 1 to 4	0:23:54
18	Workbook Question Number 5 to 8	0:24:16
19	Workbook Assignment Question Number 1 to 3	0:26:02
20	Rotating Biological Contractors	0:12:56
21	Oxidation Pond	0:22:29
22	Design Steps and Design Parameters of Oxidation Pond	0:13:13
23	Workbook Question Number 1	0:18:32
24	Workbook Assignment Question Number 2 to 4	0:36:05
25	Oxidation Ditch	0:10:59
26	Sludge Digestion Tank	0:53:09
27	Factors Affecting Process Of SDT	0:27:37
28	Design Steps of Sludge Digestion Tank	0:17:58
29	Workbook Assignment Question Number 1 and 2	0:35:21
30	Workbook Assignment Question Number 3	0:11:23
31	Septic Tank	0:30:23
32	Soak Pit & Dispersion Trenches	0:18:07
33	Imhoff Tank	0:15:06
34	Workbook Assignment Question Number 1 and 2	0:27:22
35	Workbook Assignment Question Number 3	0:16:11
36	Secondary Sedimentation Tank	0:10:17
Disposal	of Sewage Effluent	
1	Methods of Disposal	0:40:21
2	Zones of Pollution in River	0:26:44
3	Workbook Question Number 1 to 4	0:27:43
4	Factor Affecting Process Of Self Purification	0:31:11
5	Oxygen Deficit Curve	0:17:54
6	Lake Stratification	0:23:05
7	Workbook Assignment Question Number 1 and 2	0:23:07
8	Workbook Assignment Question Number 3 to 5	0:36:24

	nste Management	
1	Introduction To Solid Waste Management	0:30:39
2	Disposal Of Refuse By Landfilling, Pulverization	0:29:17
3	Disposal Of Refuse By Composting, Incineration & Pyrolysis	0:30:57
4	Examination Of solid waste	0:10:55
5	Workbook Question Number 1 to 3	0:20:17
6	Workbook Question Number 4 to 6	0:20:05
7	Workbook Question Number 7 to 9	0:24:20
8	Workbook Nuestion Number 10 and 11	0:13:50
9	Workbook Assignment Question Number 1 and 2	0:16:30
10	Workbook Assignment Question Number 3 and 4	0:21:43
Air Pollu	tion	-
1	Introduction & Classification of Air Pollutants - Part 1	0:41:01
2	Sources & Classification of Air Pollutants - Part 2	0:29:48
3	Global Warming & Ozone layer Depletion	0:20:28
4	Harmful Effects of Air pollutants	0:19:14
5	Control Devices for Particulate Matter (Part 1)	0:40:03
6	Control Devices for Particulate Matter (Part 2)	0:27:20
7	Control Devices for Gaseous Pollutants	0:15:39
8	Stable & Unstable Environment, Environmental Lapse Rate	0:22:34
9	Negative Lapse Rate & Adiabatic Lapse Rate	0:35:44
10	Plume Behaviour	0:29:50
11	Height of Stack, Plume height, Effective Height of Stack	0:19:36
12	Workbook Question Number 2 to 4	0:24:44
13	Workbook Question Number 5 to 10	0:24:36
14	Workbook Question Number 11 to 14	0:29:55
15	Workbook Assignment Question Number 1 and 2	0:23:18
Noise Po	<u> </u>	0.23.10
1	Noise Pollution	0:54:07
2	Workbook Question Number 1 to 4	0:18:10
3	Workbook Assignment Question Number 1 to 3	0:31:15
	19 Questions	0.51.15
1	Question Number 1	0:05:05
2	Question Number 2	0:06:37
3	Question Number 3	0:08:34
4	Question Number 4	0:09:22
5	Question Number 5	0:08:41
6	Question Number 6	0:05:39
7	Question Number 7	0:08:04
8 9	Question Number 8 Question Number 9	0:11:45 0:01:44
10	Question Number 9 Question Number 10	0:04:10
11	Question Number 11	0:04:10

Fluid Mechanics

PEN-Drive / G-Drive Course & LIVE Classroom Program

Workbook

Civil Engineering
Mechanical Engineering

Sr.	Chapter	Pages
1.	Fluid Properties	1
2.	Pressure Measurement	5
3.	Hydrostatic Forces	11
4.	Buoyancy & Floatation	15
5.	Liquids in Relative Equilibrium	20
6.	Fluid Kinematics	21
7.	Fluid Dynamics	27
8.	Flow Through Pipes	34
9.	Momentum Equations & Application	39
10.	Laminar & Turbulent Flow	43
11.	Boundary Layer Theory	47
12.	Hydraulic Machines	51

Sr.	Lecture Name	Duration
0	How to Study Fluid Mechanics ?	0:18:00
Fluid Pro	•	'
1	Introduction	0:29:45
2	Basic Concepts of Viscosity	0:26:08
3	Density Specific Weight, Specific Gravity	0:19:48
4	Newton's Law of Viscosity	0:27:08
5	Viscosity (Force and Power) (Parallel Plate)	0:14:54
6	Question Number 1 to 4	0:16:53
7	Question Number 5 and 6	0:11:32
8	Example (Flow between Parallel Plate)	0:10:08
9	Viscosity (Force and Power) (Journal Bearing and Thrust Bearing)	0:23:16
10	Question Number 7	0:06:25
11	Question Number 8 to 10	0:12:05
12	Newtonian and Non-Newtonian Fluids (With Question 11)	0:34:36
13	Variation of Viscosity (With Question 12)	0:23:22
14	Surface Tension	0:28:44
15	Application of Surface Tension	0:16:20
16	Capillarity (With Example)	0:21:51
17	Question Number 13 to 16	0:10:13
18	Bulk Modulus and Compressibility (With Question 17)	0:12:12
19	Vapour Pressure and Cavitation	0:24:15
Pressure	Measurement	
1	Introduction	0:07:59
2	Pressure and its Types	0:36:04
3	Pascal's Law	0:07:01
4	Free Surface	0:11:57
5	Pressure Variation in Fluid	0:54:05
6	Pressure Diagram	0:11:49
7	Pressure Variation in Gases	0:06:36
8	Pressure Head	0:27:21
9	Introduction of Pressure Measuring Devices	0:06:12
10	Barometer	0:14:58
11	Question Number 1 and 2	0:12:47
12	Piezometer	0:12:56
13	Simple Manometer	0:22:19
14	U-Tube Differential Manometer	0:12:19
15	Question Number 3 and 4	0:11:15
16	Question Number 5 and 6	0:14:52
17	Question Number 7 and 8	0:21:50
18	Shortcut for Question Number 7 and 8	0:07:07
19	Question Number 9	0:07:38
20	Single Column Tube Manometer	0:26:14

21	Inclined Tube Manometer	0:14:29
22	Question Number 10 and 11	0:14.29
	tic Forces	0:08:17
1	Introduction	0:12:31
2	Hydrostatic Force on Plane Surfaces	0:27:13
3	Special Concept (Hydrostatic Force vs Weight)	0:11:07
4	Center of Pressure	0:18:40
5	Special Concept (Center of Pressure)	0:13:12
6	Hydrostatic Force on Plane Surfaces Due to Multiple Fluids	0:07:26
7	Hinged Plane Gate Subjected to Hydrostatic Force	0:10:39
8	Question Number 1 to 3	0:16:36
9	Question Number 4 to 7	0:25:23
10	Hydrostatic Force on Curved Surfaces	0:21:37
11	Question Number 8 to 10	0:22:16
	y & Floatation	0.22.10
1	Basic Concepts of Buoyancy	0:32:19
2	Various Cases of Floatation	0:28:55
3	Apparent Weight of Solid	0:07:10
4	Question Number 1 to 4	0:17:17
5	Question Number 5 to 7	0:11:50
6	Question Number 8 to 10	0:12:07
7	Question Number 11	0:09:21
8	Stability of Floating and Submerged Bodies (Part 1)	0:26:58
9	Stability of Floating and Submerged Bodies (Part 2)	0:32:14
10	Example	0:07:24
11	Question Number 11 and 12	0:04:03
Liquids in	Relative Equilibrium	l
1	Introduction	0:17:29
2	Translation Motion	0:42:54
3	Example 1	0:15:15
4	Example 2	0:06:35
5	Question Number 1 and 2	0:08:06
6	Rotational Motion (Forced Vortex Motion)	0:31:25
7	Example 3	0:07:59
8	Question Number 3 and 4	0:13:00
Fluid Kind	ematics	
1	Introduction	0:08:27
2	Types of Flow	0:31:29
3	Description of Flow Pattern	0:15:02
4	Velocity and Acceleration of Fluid	0:19:47
5	Continuity Equation	0:19:03
6	Types of Fluid Motion or Deformation of Fluid	0:10:21
7	Rotational and Irrotational Flow	0:10:15
8	Vorticity	0:07:13
9	Question Number 1 to 4	0:19:55
10	Question number 5 to 8	0:15:19
11	Question number 9 to 11	0:11:27

	I	0.42.50
12	Question Number 12 and 13	0:12:58
13	Question number 14 to 16	0:09:38
14	Question Number 17 to 20	0:14:16
15	Potential Function	0:16:52
16	Stream Function	0:28:41
17	Question Number 21 to 24	0:08:27
18	Acceleration and Continuity Equation (Polar Coordinate)	0:10:04
19	Question Number 25 to 27	0:14:42
Fluid Dyna		
1	Introduction	0:07:07
2	Euler's Equation and Bernoulli's Equation	0:37:45
3	Question Number 1 and 3	0:17:18
4	Question number 4 (With Important Note Point)	0:17:39
5	Question Number 5 and 6	0:14:46
6	Flow through Siphon	0:13:58
7	Question Number 7 to 9	0:18:10
8	Application of Bernoulli's Equation (Venturimeter)	0:22:50
9	Application of Bernoulli's Equation (Orificemeter and Pitot Tube) Question Number 10 to 11	0:17:25
10		0:10:10
11	Question Number 12 to 13	0:12:14
12 13	Question Number 14 to 15	0:06:59
14	Question Number 16 to 18 Question Number 19 to 20	0:11:54 0:12:08
	pugh Pipes	0.12.08
1	Introduction	0:16:35
2	Darcy Weisbach Equation (Major Head Loss)	0:10:33
3	Minor Head Losses	0:10:56
4	Total Head loss and Power Loss	0:19:42
5	Question Number 1 to 3	0:17:24
6	Question Number 4 to 6	0:24:03
7	Series and Parallel Combination of Pipes	0:30:53
8	Flow Through Bypass	0:16:40
9	Question Number 7 and 8	0:15:44
10	Question Number 9 and 10	0:09:51
11	Power Transmission through Pipe	0:08:25
Momenti	um Equations & Application	
1	Introduction	0:08:53
2	Force on Pipe Bend	0:12:12
3	Force due to Free Jet	0:11:28
4	Question Number 1 to 4	0:14:30
5	Question Number 5 to 7	0:12:30
6	Angular Momentum Equation (Lawn Sprinkler)	0:25:23
7	Question Number 8	0:07:08
Laminar 8	Turbulent Flow	
1	Introduction	0:09:07
2	Viscous Flow through Pipe	0:23:34
3	Question Number 1 to 3	0:08:24

4	Question Number 4 to 6	0:12:02
5	Laminar Flow between Two Parallel Plate	0:03:01
6	Momentum Correction Factor and Kinetic Correction Factor	0:07:48
Boundar	y Layer Theory	
1	Boundary layer and Boundary Layer Thickness	0:17:11
2	Various Types of Thickness of Boundary Layer	0:21:31
3	Question Number 1 to 3	0:12:10
4	Question Number 4 and 5	0:11:10
5	Boundary Layer Thickness for Laminar and Turbulent Flow	0:05:38
6	Shear Stress and Drag Force	0:08:16
7	Drag Force and Lift Force	0:04:34
8	Question Number 6 to 9	0:15:48
9	Question Number 10 to 12	0:13:36
10	Question Number 13 to 15	0:09:52
11	Boundary Layer Separation	0:11:16
Hydraul	c Machines	
1	Introduction	0:05:58
2	Pelton Turbine	0:30:03
3	Velocity Triangle for Blades	0:23:52
4	Pelton Turbine (Blade Power and Hydraulic Efficiency)	0:13:02
5	Question Number 1 to 3	0:14:06
6	Specific Speed of Turbine	0:04:31
7	Degree of Reaction	0:03:12
8	Characteristics of Pelton, Francis and Kaplan Turbines	0:18:14
9	Example 1	0:08:00
10	Question Number 4 and 5	0:12:30
11	Question Number 6	0:08:03
12	Draft Tube	0:09:22
13	Model Analysis and Similitude	0:15:58
14	Question Number 7 to 10	0:12:49
15	Similarity of Forces (Dynamic Similarity)	0:16:52
16	Basics of Centrigugal Pump	0:22:01
17	Efficiency in Multi Stage Pump	0:07:24
18	Specific Speed and Model Laws in Pumps	0:03:07
19	Net Positive Suction Head (NPSH)	0:14:04
20	Question Number 11 to 13	0:07:11
21	Question Number 14 and 15	0:06:22
Quick Re	vision of Fluid Mechanics for GATE Exam	0:53:56

Geotechnical Engineering

PEN-Drive / G-Drive Course & LIVE Classroom Program

Workbook

Civil Engineering

Sr.	Chapter	Pages
1.	Origin, Index Properties and Classification of Soil	1
2.	Permeability, Effective Stress, Seepage and Well Hydraulics	7
3.	Compressibility - Compaction and Consolidation	16
4.	Shear Strength of Soil & Stress Distribution	23
5.	Lateral Earth Pressure Theories and Stability Analysis of Slopes	28
6.	Shallow Foundation and Bearing Capacity	35
7.	Pile Foundation	41
8.	Soil Stabilization and Soil Exploration	46

Sr.	Lecture Name	Duration
Origin, In	dex Properties and Classification of Soil	•
0	Motivation & Guidance	0:18:01
1	Introduction & Origin of Soil	0:19:19
2	Types of Soils	0:19:40
3	Workbook Question	0:03:18
4	Phase System	0:30:15
5	Properties of Soil (Part-1)	0:31:53
6	Properties of Soil (Part-2)	0:19:55
7	Properties of Soil (Part-3)	0:34:33
8	Properties of Soil (Part-4)	0:19:41
9	Maximum & Minimum Void Ratio in Spherical Shaped Sandy Soil Particles	0:20:45
10	Relationships Between Different Properties of Soil	0:34:54
11	Workbook Question	0:05:21
12	Workbook Question	0:19:38
13	Workbook Question	0:08:49
14	Workbook Question	0:15:11
15	Determination of Water Content (Part 1)	0:41:26
16	Determination of Water Content (Part 2)	0:38:40
17	Determination of Specific Gravity of Soil	0:15:27
18	Determination of Unit Weight of Soil	0:44:15
19	Consistency of Soil	0:20:34
20	Determination of Liquid Limit	1:07:27
21	Determination of Plastic Limit	0:23:13
22	Determination of Shrinkage Limit	0:41:39
23	Workbook Question	0:10:03
24	Shrinkage Ratio	0:18:51
25	Volumetric, Linear and Degree of Shrinkage	0:28:12
26	Consistency Indices (Part 1)	0:29:07
27	Consistency Indices (Part 2)	0:17:17
28	Relationship Between Consistency Limits and Different Engineering Properties	0:12:28
29	Workbook Question	0:18:30
30	Different Properties of Soil-Sensitivity & Thixotropy	0:36:02
31	Different Properties of Soil-Activity	0:15:55
32	Different Properties of Soil-Density Index	0:24:24
33	Different Properties of Soil-Relative Compaction	0:15:03
34	Different Properties of Soil-Collapsibility	0:15:12
35	Workbook Question	0:08:26
36	Soil Classification	0:24:04
37	Sieve Analysis	0:15:47
38	Sieve Analysis-Coarse Sieving	0:32:19
39	Sieve Analysis-Fine Sieving	0:10:55

40	Analysis of Particle Size Distribution Curve	0:49:32
41	Sedimentation Analysis	0:43:32
42	Workbook Question	0:10:45
43	Indian Standard Soil Classification System-Fine Grain Soil	0:49:25
44	Workbook Question	0:45:25
45	Indian Standard Soil Classification System-Coarse Grain Soil	0:44:22
46	Workbook Question	0:03:45
47	Workbook Question	0:13:17
48	Workbook Question	0:13:17
49	Field Observations	0:07:27
50	Clay Mineralogy	0:30:16
51	Workbook Question	0:06:28
	ility, Effective Stress, Seepage and Well Hydraulics	0.00.20
1	Introduction to Permeability	0:12:32
2	Darcy's Law of Permeability	0:44:54
3	Workbook Question	0:15:58
4	Workbook Question	0:06:04
5	Factors Affecting Coefficient of Permeability	0:31:06
6	Workbook Question	0:04:54
7	Permeability Through Stratified Soil Deposits	0:28:40
8	Workbook Question	0:10:06
9	Absolute Permeability	0:22:41
10	Constant Head Permeability Test	0:15:57
11	Falling Head Permeability Test	0:21:28
12	Horizontal Capillary Permeability Test	0:23:55
13	Workbook Question	0:13:53
14	Workbook Question	0:04:06
15	Workbook Question	0:15:12
16	Workbook Question	0:06:13
17	Workbook Question	0:09:46
18	Introduction to Total Stress, Pore Water Pressure and Effective Stress	0:33:28
19	Analysis of Effective Stress	0:23:09
20	Workbook Question	0:04:51
21	Workbook Question	0:15:09
22	Types of Soil Water	0:16:08
23	Capillarity in Soil	1:06:42
24	Effect of Capillarity on Effective Stress	0:16:57
25	Workbook Question	0:11:24
26	Workbook Question	0:09:31
27	Seepage Analysis	0:19:05
28	Workbook Question	0:06:49
29	Effect of Seepage on Effective Stress (Part 1)	0:24:56
30	Effect of Seepage on Effective Stress (Part 2)	0:31:13
31	Effect of Seepage on Effective Stress (Part 3)	0:30:52
32	Workbook Question	0:05:34
33	Quick Sand Condition	1:04:18

34	Workbook Question	0:06:46
35	Workbook Question	0:06:45
36	Workbook Question	0:07:34
37	Workbook Question	0:20:28
38	Laplace Equation and Properties of Flow Net	0:45:10
39	Seepage Discharge Through Isotropic Soil	0:18:17
40	Workbook Question	0:13:49
41	Workbook Question	0:05:44
42	Seepage Discharge Through Anisotropic Soil	0:22:55
43	Workbook Question	0:04:40
44	Confined and Unconfined Seepage	0:21:06
45	Characteristics of Phreatic Line	0:15:54
46	Analysis of Phreatic Line	0:17:11
47	Seepage Discharge Through Earthen Dam (Part 1)	0:18:35
48	Seepage Discharge Through Earthen Dam (Part 2)	0:19:43
49	Seepage Discharge Through Earthen Dam (Part 3)	0:15:57
50	Workbook Question	0:12:49
51	Introduction to Well Hydraulics and Different Types of Geological Formation	0:13:48
52	Specific Yield and Specific Retention	0:11:22
53	Workbook Question	0:04:18
54	Field Methods to Determine Coefficient of Permeability	0:31:11
55	Workbook Question	0:06:43
56	Workbook Question	0:07:06
Compre	ssibility - Compaction and Consolidation	
0	Motivation Lecture - Language doesn't become a barrier	0:11:50
1	Introduction to Compressibility	0:22:35
2	Primary Consolidation	0:51:05
3	Difference Between NCC and OCC Soils	0:16:01
4	Workbook Question	0:04:13
5	Time - Settlement Curves	0:09:36
6	Different Compressibility Coefficients	0:35:44
7	Workbook Question	0:03:31
8	Terzaghi's One Dimensional Consolidation Theory (Part 1)	0:55:59
9	Terzaghi's One Dimensional Consolidation Theory (Part 2)	0:30:50
10	Workbook Questions	0:05:55
11	Degree of Consolidation and Time Factor	0:34:50
12	Workbook Questions	0:08:43
13	Workbook Questions	0:24:24
14	Immediate or Elastic Settlement	0:21:48
15	Primary Consolidation Settlement	0:19:07
16	Primary Consolidation Settlement in OCC Soil	0:21:16
17	Secondary Consolidation Settlement	0:17:16
18	Rules to Estimate Primary Consolidation Settlement	0:26:14
19	Workbook Questions	0:12:04
20	Workbook Question	0:15:20
21	Workbook Question	0:21:13

22	Course Deat of Time Fitting Navil 1	0.20.27
22	Square Root of Time Fitting Method	0:28:27
23	Logarithm of Time Fitting Method	0:25:59
24	Introduction to Compaction & Compaction Tests	1:15:54
25	Workbook Questions	0:11:19
26	Factors Affecting Compaction of Soil	0:35:07
27	Workbook Questions	0:06:07
28	Different Type of Vibrators	0:15:42
29	Workbook Question	0:05:07
	ength of Soil & Stress Distribution	1
1	Mohr Coulomb's Theory of Shear Strength	0:31:57
2	Relation Between Major and Minor Principal Stress in Soil	0:32:45
3	Workbook Questions	0:11:56
4	Direct Shear Test and It's Limitations	0:42:58
5	Triaxial Test - Consolidation Drain Test	0:53:22
6	Skempton's Pore Pressure Parameters	0:16:20
7	Triaxial Test - Consolidation Undrain Test	0:50:19
8	Triaxial Test - Unconsolidation Undrain Test	0:43:08
9	Workbook Questions	0:09:02
10	Workbook Questions	0:09:44
11	Workbook Questions	0:11:12
12	Workbook Question	0:08:21
13	Unconfined Compression Test	0:14:12
14	Workbook Question	0:03:25
15	Vane Shear Test	0:38:00
16	Workbook Question	0:04:20
17	Stress Distribution and Boussinesq's Theory	0:32:41
18	Workbook Question	0:03:05
19	Pressure Distribution Diagram (Part-1)	0:34:17
20	Pressure Distribution Diagram (Part-2)	0:21:37
21	Pressure Distribution Diagram (Part-3)	0:14:03
22	Different Theories of Vertical Stress Distribution (Part-1)	0:15:35
23	Different Theories of Vertical Stress Distribution (Part-2)	0:12:05
24	Equivalent Point Load Method	0:14:48
25	Workbook Questions	0:09:08
26	Workbook Question	0:07:03
27	Workbook Question	0:09:48
28	Westergaard's Analysis	0:20:09
29	Workbook Question	0:14:17
30	Newmark's Chart Method	0:58:34
Lateral Ea	arth Pressure Theories and Stability Analysis of Slopes	•
1	Geostatic and Hydrostatic Condition, Introduction of Lateral Earth Pressure at Rest, Active & Passive Stage	0:50:20
2	Rankine's Analysis of Earth Pressure for Cohensionless Soil	0:51:14
3	Different Cases Based on Rankine's Analysis for Cohesionless Soil	1:08:19
4	Workbook Questions	0:10:53
5	Workbook Questions	0:15:47
	I '	1

6	Workbook Questions	0:09:28
7	Bell's Analysis for Cohesive Soil	1:04:12
8	Workbook Questions	0:16:37
9	Workbook Question	0:21:21
10	Workbook Questions	0:12:24
11	Analysis of Sheet Piles	0:28:52
12	Introduction to Stability Analysis of Slopes	0:14:52
13	Analysis of Infinite Slopes (Part 1)	0:42:21
14	Analysis of Infinite Slopes (Part 2)	0:55:28
15	Workbook Questions	0:06:24
16	Workbook Questions	0:17:56
17	Workbook Questions	0:16:28
18	Analysis of Finite Slopes (Part 1)	0:50:37
19	Analysis of Finite Slopes (Part 2)	0:52:47
20	Workbook Question	0:10:40
21	Workbook Questions	0:08:31
22	Workbook Questions	0:10:42
23	Workbook Question	0:08:40
Shallow	Foundation and Bearing Capacity	<u> </u>
0	Motivation Lecture - Give Extraordinary Results	0:08:22
1	Introduction to Bearing Capacity and their Different Types	0:38:40
2	General Shear Failure	0:12:29
3	Local Shear Failure	0:10:55
4	Punching Shear Failure	0:08:26
5	Rankine's Theory of Bearing Capacity	0:22:32
6	Terzaghi's Theory of Bearing Capacity (Part 1)	0:24:29
7	Terzaghi's Theory of Bearing Capacity (Part 2)	0:29:30
8	Terzaghi's Bearing Capacity Equation for Different Shape of Footings	0:08:45
9	Workbook Questions	0:15:07
10	Effect of Water Table on Bearing Capacity (Part 1)	0:31:13
11	Effect of Water Table on Bearing Capacity (Part 2)	0:43:58
12	Workbook Questions	0:23:41
13	Workbook Questions	0:32:37
14	Skempton's Analysis	0:20:03
15	Meyerhoff's Analysis and IS Code Method	0:45:06
16	Workbook Question	0:17:04
17	Workbook Questions	0:35:15
18	Plate Load Test	0:54:48
19	Workbook Questions	0:09:22
20	Standard Penetration Test	1:10:04
21	Workbook Question	0:06:59
22	Determination of Allowable Bearing Pressure Using SPT Number	0:09:42
23	Workbook Question	0:17:24
24	Cone Penetration Test	0:06:05
25	Contact Pressure Distribution	0:34:28
26	Workbook Question	0:03:58

Pile Fou	ndation	
1	Types of Pile (Part 1)	0:29:41
2	Types of Pile (Part 2)	0:07:00
3	Determination of Ultimate Load Carrying Capacity	0:10:42
4	Determination of End Bearing Force	0:38:45
5	Alpha Method	0:19:00
6	Lambda Method	0:12:02
7	Beta Method	0:35:25
8	Ultimate Load Carrying Capacity of Pile in C-Phi Soil	0:05:33
9	Workbook Question	0:07:39
10	Workbook Question	0:06:15
11	Workbook Question	0:07:55
12	Workbook Question	0:12:44
13	Workbook Question	0:04:36
14	Workbook Question	0:15:28
15	Analysis of Under-Reamed Piles	0:42:52
16	Workbook Question	0:07:57
17	Dynamic Methods	0:15:58
18	Workbook Question	0:03:47
19	Field Methods (Part 1)	0:30:49
20	Field Methods (Part 2)	0:19:33
21	Group Action of Piles	0:42:47
22	Ultimate Load Carrying Capacity of Pile Group	0:22:21
23	Efficiency of Pile Group	0:20:01
24	Workbook Question	0:05:46
25	Workbook Question	0:04:27
26	Workbook Question	0:12:34
27	Negative Skin Friction	0:44:20
28	Workbook Question	0:17:56
29	Settlement of Pile Group (Part 1)	0:23:15
30	Settlement of Pile Group (Part 2)	0:20:40
31	Workbook Question	0:18:09
Soil Stab	ilization and Soil Exploration	
1	Site exploration (types and methods)	0:26:23
2	Workbook Question	0:03:00
3	Types of Soil Sample	0:18:09
4	Design of Sampler	0:44:56
5	Workbook Question	0:02:11
6	Workbook Question	0:02:43
7	Workbook Question	0:02:02
8	Workbook Question	0:05:13
9	Workbook Question	0:02:11
10	Field methods of sub-surface investigation	0:14:59
11	Soil Stabilization	0:09:01
12	Motivation Lecture - Hit Your Target Now	0:05:09
Quick Re	vision of Geotechnical Engineering	3:25:00

Hydrology & Irrigation

PEN-Drive / G-Drive Course & LIVE Classroom Program

Workbook

Civil Engineering

Table of Contents (Hydrology)

Sr.	Chapter	Pages
1.	General Aspects of Hydrology & Precipitation	1
2.	Evaporation & Evapo-transpiration	6
3.	Infiltration	9
4.	Flood Measurement & Flood Routing	14
5.	Hydrograph	20
6.	Well Hydraulics	28

Video Lecture Information (Hydrology)

Sr.	Lecture Name	Duration
General	Aspects of Hydrology & Precipitation	
1	General Aspects of Hydrology	0:27:44
2	Precipitation & Types of Precipitation	0:20:16
3	Some Definitions	0:16:26
4	Measurement of Rainfall	0:15:13
5	Rain Gauge Network	0:23:05
6	Estimation of Missing Rainfall Data	0:23:29
7	Consistency of Rainfall Data	0:12:09
8	Determination of Average Rainfall	0:58:38
9	Miscellaneous Concepts	0:11:37
10	Workbook Questions 1-9	0:30:13
11	Workbook Questions 10-18	0:32:08
Evapora	tion & Evapotranspiration	
1	Evaporation & Factors Affecting Evaporation	0:19:10
2	Method of reduction of Evaporation	0:06:44
3	Methods of Measurement of Evaporation	0:29:24
4	Evapotranspiration	0:14:09
5	Workbook Questions	0:18:32
Infiltrati	on	<u>.</u>
1	Introduction & Horton's Equation of Infiltration	0:12:40
2	Infiltration Indices	0:28:55
3	Some Examples	0:10:08
4	Workbook Questions 1-7	0:39:27
5	Workbook Questions 8-14	0:24:34
6	Workbook Questions 15-21	0:36:56
Flood M	easurement & Flood Routing	·
1	Rational Method and Empirical Method	0:17:47
2	Statistical Probability Method	0:27:18
3	Theoretical Probability Method	0:25:34
4	Confidence Limits	0:16:48
5	Stream Flow Measurement	0:24:53
6	Flood Routing	0:43:57
7	Workbook Questions 1-13	0:24:54
8	Workbook Questions 14-26	0:28:33

Hydrogi	raph	
1	Flood Hydrograph	0:15:30
2	Factors affecting Hydrograph	0:11:47
3	Direct Runoff Hydrograph	0:25:46
4	Unit Hydrograph	0:12:32
5	Applications of Unit Hydrograph	0:40:54
6	S-Curve Method	0:24:46
7	Synthetic Unit Hydrograph	0:06:45
8	Instantaneous Unit Hydrograph	0:08:09
9	Workbook Questions 1-12	0:31:27
10	Workbook Questions 13-21	0:35:22
11	Workbook Questions 22-32	0:36:23
12	Workbook Questions 33-42	0:39:44
Well Hy	draulics	
1	Basics of Ground Water Hydraulics	0:17:44
2	Various Types of Geological Formations	0:09:11
3	Methods of Extraction of Water from Ground	0:14:02
4	Open Wells	0:26:59
5	Tube Wells	0:28:51
6	Miscellaneous Concepts	0:17:57
7	Workbook Questions	0:04:59

Table of Contents (Irrigation)

Sr.	Chapter	Pages
1.	Water requirement of crops & methods of irrigation	31
2.	Design of Canals	38
3.	Analysis of Gravity Dams & Spillways	42
4.	Theory of Seepage & Diversion head works	45
5.	Miscellaneous Topics	48

Video Lecture Information (Irrigation)

Sr.	Lecture Name	Duration
Water r	equirement of crops & methods of irrigation	
1	Introduction of Irrigation	0:20:04
2	Surface Irrigation Methods	0:26:30
3	Other Irrigation Methods	0:15:57
4	Relationship Between Duty, Delta & Base Period	0:38:18
5	Irrigation Efficiencies	0:25:14
6	Soil Moisture Relationship (Part 1)	0:31:13
7	Soil Moisture Relationship (Part 2)	0:31:33
8	Some Important Definitions	0:18:15
9	Quality of Irrigation Water	0:14:13
10	Workbook Questions 1-12	0:36:45
11	Workbook Questions 13-19	0:37:45
12	Workbook Questions 20-25	0:23:02
13	Workbook Questions 26-33	0:26:31
Design o	of Canals	
1	Introduction of Canals	0:09:40
2	Design of Canals by Kennedy's Theory	0:37:39
3	Design of Canals by Lacey's Theory	0:33:00
4	Design of Canals by Sediment Transport Theory	0:27:14
5	Introduction & Economics of Lined Canals	0:12:55
6	Design of Lined Canals	0:30:41
7	Workbook Questions	0:25:40
Analysis	of Gravity Dams & Spillways	·
1	Introduction of Dams	0:09:49
2	Forces acting on Gravity Dam	0:35:41
3	Failure Modes of Dams	0:27:49
4	Design Steps	0:40:55
5	Elementary Profile of the Dam	0:22:29
6	Practical Profile of the Dam	0:02:42
7	Spillways	0:30:13
8	Energy Dissipators	0:19:00
9	Workbook Questions	0:19:19

Theory of Seepage & Diversion head works		
1	Introduction to Diversion Head Works	0:15:49
2	Bligh's Creep Theory & Lame's Weighted Creep Theory	0:44:42
3	Khosla's Theory of Independent Variables	0:11:30
4	Correction of Khosla's Theory	0:12:52
5	Workbook Questions	0:21:42
Miscellaneous Topics		
1	Canal Outlet	0:13:03
2	Cross Drainage Work	0:11:32
3	Water Logging	0:15:24
4	River Training Works	0:06:41
5	Meandering Flow	0:04:25
6	Miscellaneous	0:06:36
7	Workbook Questions	0:07:46

Open Channel Flow

PEN-Drive / G-Drive Course & LIVE Classroom Program

Workbook

Civil Engineering

Sr.	Chapter	Pages
1.	Introduction To Open Channel Flow	1
2.	Uniform Flow	2
3.	Energy Depth Relationship	6
4.	Non-Uniform Flow - Gradually Varied Flow	11
5.	Rapidly Varied Flow, Hydraulic Jump	15
6.	Unsteady Flow – Surges	18

Sr.	Lecture Name	Duration
0	How to Study PD-GD course for Open Channel Flow ?	0:14:01
Introduct	ion To Open Channel Flow	,
1	Introduction, Energy of flowing fluid in OCF	0:34:03
2	Types Of Open Channel Flow	0:22:23
3	Geometric Parameters	0:20:55
4	Classification Of OCF (Part -1)	0:56:08
5	Classification Of OCF (Part -2)	0:15:35
6	Types Of Equation	0:46:13
7	Velocity Distribution in OCF	0:31:29
Uniform	Flow	-
1	Introduction & Features Of Uniform Flow	0:34:11
2	Uniform Flow Equations & Workbook MCQ & NAT Q.1-Q.3	0:32:54
3	Workbook MCQ & NAT Q.4-Q.9	0:34:08
4	Most Efficient Rectangular Channel Section	0:36:04
5	Workbook Assignment Q.1	0:12:13
6	Most Efficient Trapezoidal Channel Section	0:32:37
7	Workbook MCQ & NAT Q.12-Q.14	0:18:44
8	Workbook Assignment Q.2-Q.4	0:49:32
9	Most efficient Triangular Channel Section	0:33:56
10	Most Efficient Circular Channel Section	1:01:17
11	Workbook Assignment Q.5	0:09:56
Energy D	epth Relationship	•
1	Introduction	0:48:39
2	Critical Depth & Minimum Specific Energy	0:47:30
3	Workbook MCQ & NAT Q.1-Q.8	0:37:26
4	Workbook MCQ & NAT Q.9-Q.12	0:21:53
5	Channel Transition	0:22:51
6	Flow Through Hump (Subcritical)	1:00:35
7	Flow Through Hump (Supercritical)	0:19:28
8	Workbook MCQ & NAT Q.13-Q.15	0:28:57
9	Workbook Assignment Q.1	0:35:56
10	Width Contraction (Subcritical)	0:37:01
11	Width Contraction (Supercritical)	0:12:56
12	Workbook MCQ & NAT Q.16-Q.19	0:22:12
13	Workbook Assignment Q.2-Q.3	0:26:28
14	Workbook Assignment Q.4	0:24:47
15	Workbook Assignment Q.5-Q.6	0:19:11

Graduall	y Varied Flow	
1	Introduction & Salient features Of GVF	0:23:02
2	Derivation For Wide Rectangular Channel	0:25:29
3	Classification of Flow Profile (Part 1)	0:36:20
4	Classification of Flow Profile (Part 2)	0:47:11
5	Classification of Flow Profile (Part 3)	0:16:35
6	Workbook MCQ & NAT Q.2-Q.5	0:26:11
7	Practical Significance Of Flow Profile	0:46:40
8	Workbook MCQ & NAT Q.6-Q.8	0:10:05
9	Control Section & Break In Grade	0:48:13
10	Gradually Varied Flow Computation	0:11:09
11	Workbook MCQ & NAT Q.9-Q.13	0:36:53
Rapidly	Varied Flow	
1	Introduction & Characteristics of RVF	0:45:43
2	Momentum Equation Of Hydraulic Jump	0:39:56
3	Hydraulic Jump In Rectangular & Non-Rectangular Frictionless Channel	0:44:31
4	Workbook MCQ & NAT Q.1-Q.5	0:31:49
5	Workbook MCQ & NAT Q.6-Q.10	0:35:14
6	Classification Of Jump	0:36:35
Surges		
1	Introduction & Types Of Surges	0:38:27
2	Analysis Of Surges	0:33:01
3	Celerity in Surges	0:19:26

RCC Structure & Prestressed Concrete

PEN-Drive / G-Drive Course & LIVE Classroom Program

Workbook

Civil Engineering

Sr.	Chapter	Pages
1.	IS Code Recommendations for Limit State Method of Design	1
2.	Limit State Method of Collapse : Flexure	5
3.	Shear, Torsion, Bond Strength & Development Length	13
4.	Slab and Stair Case	19
5.	Limit State Method of Collapse : Compression	22
6.	Prestressed Concrete	26
7.	Concrete Technology	30

Sr.	Lecture Name	Duration
IS Code R	ecommendations For Limit State Method of Design	•
0	Motivation and Guidance	0:17:40
1	Introduction to RCC and it's Design Methods	0:50:02
2	Introduction to Limit State Method	0:47:17
3	Important Definitions	0:22:34
4	Probability of Failure of Structure	0:10:21
5	Workbook Q.1 - Q.2	0:11:59
6	Type of Steel Reinforcements	0:42:15
7	Determination of Yield Point in HYSD Bars	0:14:39
8	Creep and Shrinkage of Concrete	0:46:06
9	Modulus of Elasticity of Concrete	0:29:22
10	Workbook Q.3 - Q.7	0:10:00
11	Tensile Strength of Concrete	0:19:03
12	Workbook Q.8 - Q.10	0:08:17
13	Durability Requirements	0:25:02
Limit Stat	te Method of Collapse - Flexure	•
1	Assumptions in Limit State of Collapse Under the Flexure Condition	0:55:58
2	Analysis of Singly Reinforced Beam Section	0:40:45
3	Limiting Depth of Neutral Axis	0:22:51
4	Types of RCC Sections	0:26:48
5	Workbook Q.1 - Q.4	0:10:54
6	Expected Type of Problems From Singly Reinforcement Beam	0:39:12
7	Workbook Q.5	0:17:08
8	Workbook Q.6 - Q.8	0:17:31
9	Workbook Q.9	0:20:27
10	Workbook Q.10	0:14:57
11	Workbook Q.12	0:06:33
12	Analysis of Doubly Reinforced Beam	0:56:06
13	Expected Type of Problems From Doubly Reinforced Beam	0:39:37
14	Workbook Q.13	0:12:45
15	Minimum and Maximum Area of Steel Reinforcement in Beams	0:13:11
16	Workbook Q.11	0:04:12
17	Introduction and Effective Width of Flanged Beam	0:23:25
18	Analysis of Flanged Beams (Part 1)	0:09:39
19	Analysis of Flanged Beams (Part 2)	0:27:00
20	Analysis of Flanged Beams (Part 3)	0:28:41
21	Workbook Q.14	0:22:46
22	Characteristics Compressive Strength of Concrete	0:34:03
23	Acceptance Criteria of Concrete Mix Design	0:39:31
24	Workbook Q.15 - Q.18	0:19:48

Shear, To	orsion, Bond Strength & Development Length	
1	Shear Stress Distribution in Plain Cement Concrete Sections	0:25:32
2	Shear Stress Distribution in RCC Sections	0:36:03
3	Types of Cracks	0:52:27
4	Nominal Shear Stress, Shear Strength and Maximum Shear Strength of Concrete	0:23:34
5	Analysis and Design of Shear Reinforcement	0:55:44
6	Nominal Shear Stress in Varying Depth Sections	0:08:46
7	IS Code Recommendation for Spacing of Shear Stirrups	0:06:15
8	Workbook Q.1 - Q.3	0:13:03
9	Workbook Q.4	0:11:39
10	Workbook Q.5	0:13:30
11	Bond Stress and It's Estimation	0:27:26
12	Workbook Assignment Q.1	0:28:57
13	Development Length and Lap Splices	0:38:59
14	Workbook Q.6 - Q.8	0:12:52
15	Development Length Check	0:30:55
16	Anchorage - Bend - Hook	0:28:27
17	Workbook Assignment Q.2	0:28:32
18	Positive and Negative Moment Reinforcement	0:12:06
19	Limit State of Collapse - Torsion	0:53:27
20	Design of Shear Reinforcement Considering the Effect of Torque	0:39:38
21	Workbook Q.9	0:05:41
22	Workbook Q.10	0:16:28
23	IS Code Recommendation for Side Face Reinforcement	0:12:14
Slab and	Stair Case	1
0	Motivation and Guidance	0:10:25
1	Effective Span in Different Support Conditions	0:32:35
2	Workbook Q.1	0:03:58
3	Check for Deflection in Beam and Slab	0:10:02
4	Control on Deflection in Beam and One Way Slab	0:27:46
5	Question Based on Control on Deflection	0:19:22
6	Control on Deflection in Two Way Slab	0:09:20
7	Check for Lateral Stability of Beams	0:33:41
8	IS Code Recommendation for Design of Slabs	0:15:59
9	Types of Slab (One Way & Two Way)	0:38:02
10	Workbook Q.2 - Q.3	0:10:36
11	Analysis and Design of One Way Slab	1:35:25
12	Bending Moment and Shear Force Coefficients for a Continuous Beam/Slab	0:14:59
13	Load Distribution in Two Way Slab	0:29:24
14	Load Distribution in One Way Slab	0:07:36
15	Introduction to Staircase and it's Effective Span	0:09:55
16	Workbook Q.4	0:02:28
17	Workbook Assignment Q.2	0:49:20

	te Method of Collapse - Compression	0.55.5
1	Important Definitions and IS Code Recommendations	0:52:01
2	Minimum Eccentricity	0:23:14
3	Different Types of Column Design	0:19:51
4	Assumptions in Limit State of Collapse Under the Compression Condition	0:33:59
5	Workbook Q.1 - Q.4	0:08:40
6	Analysis and Design of Axially Loaded Columns	0:45:55
7	IS Code Recommendations	0:43:19
8	Workbook Q.5 - Q.7	0:17:22
9	Analysis and Design of Helically Reinforced Column	0:35:21
10	Workbook Assignment Q.1	0:27:13
11	Column Interaction Diagram	0:36:52
12	Design of Columns Subjected to Axial Load and Uniaxial Bending	0:35:17
13	Design of Columns Subjected to Axial Load and Biaxial Bending	0:42:51
14	Workbook Q.8	0:04:49
15	Design of Long Columns	0:11:41
16	IS Code Recommendations for Design of RCC Walls	0:08:23
17	Estimation of Upward Soil Pressure	0:31:06
18	IS Code Recommendations for Design of Footings	0:18:36
19	Analysis and Design of Footing	0:19:24
20	Bending Moment Criteria	0:37:05
21	One Way Shear Criteria	0:29:28
22	Two Way Shear Criteria	0:25:00
23	Design of Depth and Steel Reinforcement for Footing	0:27:18
24	Transfer of Loads	0:23:55
25	Workbook Q.9 - Q.10	0:15:00
26	Introduction to Working Stress Method and Modular Ratio	0:21:56
27	Design Philosophy of Working Stress Method	0:29:08
28	Assumptions and Recommendations in Working Stress Method of Design	0:40:10
29	Analysis and Design of a Singly Reinforced Beam Section Using WSM	0:16:39
30	Critical Depth of Neutral Axis and Type of Sections in WSM	0:21:51
31	Expected Type of Problem From Singly Reinforced Beam (Part 1)	0:28:29
32	Expected Type of Problem From Singly Reinforced Beam (Part 2)	0:14:13
33	Question Based on MOR using WSM	0:12:01
34	Analysis of Doubly Reinforced Beam Using WSM	0:25:01
35	Design of Doubly Reinforced Beam Using WSM	0:09:56
36	Workbook Q.11 - Q.16	0:24:09
	sed Concrete	1 2:= ::30
1	Introduction to Prestressed Concrete	0:15:44
2	Types of Prestressed Concrete	0:30:59
3	Merits and Demerits of Prestressed Concrete	0:12:13
4	Methods to Analyse Prestressed Concrete Sections (Part 1)	0:42:04
5	Workbook Q.1 - Q.2	0:42:04
6	Methods to Analyse Prestressed Concrete Sections (Part 2)	0:38:57

Quick Rev	vision of RCC	3:36:54
21	Motivation and Guidance	0:08:16
20	Bricks and Different IS Code Recommendations	0:24:40
19	Workbook Q.13	0:08:51
18	Admixtures and Their Different Types	0:29:58
17	Workbook Q.9 - Q.12	0:12:02
16	Tensile Strength Test of Concrete	0:19:11
15	Compressive Strength Test - Non Destructive Test	0:51:10
14	Compressive Strength Test - Destructive Test	0:21:06
13	Workability Test - Vee Bee Test	0:22:14
12	Workability Test - Flow Table Test	0:18:32
11	Workability Test - Compaction Factor Test	0:24:27
10	Workability Test - Slump Cone Test	0:31:24
9	Introduction to Concrete and It's Workability	0:38:32
8	Workbook Q.1 - Q.8	0:18:19
7	Types of Cement	0:21:34
6	Laboratory Tests of Cement - Soundness Test & Strength Test	0:39:27
5	Laboratory Tests of Cement - Consistency Test & Setting Time Test	0:36:16
4	Laboratory Tests of Cement - Fineness of Cement	0:19:52
3	Field Tests of Cement	0:18:06
2	Bouge's Compounds	0:39:05
1	Introduction to Cement and It's Different Ingredients	0:26:47
Concrete	Technology	<u> </u>
21	Difference Between Pretensioned and Post Tensioned Concrete	0:14:41
20	Workbook Assignment Q.4 - Q.5	0:14:05
19	Workbook Q.6	0:13:33
18	Gain and Loss of Prestress Due to External Loading	0:20:17
17	Workbook Assignment Q.3	0:15:01
16	Loss of Prestress Due to Friction	0:28:34
15	Workbook Q.5	0:10:33
14	Loss of Prestress Due to Shrinkage Relaxation of Steel & Anchorage Slip	0:20:53
13	Workbook Assignment Q.2	0:41:58
12	Workbook Q.3	0:08:31
11	Loss of Prestress Due to Elastic Shortening of Concrete	0:45:26
10	Loss of Prestress Due to Creep	0:22:01
9	Loss of Prestress	0:17:47
8	Methods to Analyse Prestressed Concrete Sections (Part 3)	0:39:18

Strength of Material

PEN-Drive / G-Drive Course & LIVE Classroom Program

Workbook

Civil Engineering
Mechanical Engineering

Sr.	Chapter	Pages
1.	Simple Stress-Strain and Elastic Constants	1
2.	Principal Stress-Strain and Mohr's Circle	12
3.	Shear Force and Bending Moment	19
4.	Bending of Beam and Shear Centre	27
5.	Torsion	37
6.	Deflection of Beam and Strain Energy	43
7.	Columns	52
8.	Thin Cylinder	55
9.	Theory of Failure	58

Sr.	Lecture Name	Duration
00	How to Study Strength of Material ?	0:24:00
Stress - S	train and Elastic Constants	
01	Introduction of SOM	0:35:03
02	Stress and its Types	0:44:23
03	Special Concept on Stress	0:14:09
04	Stress Tensor for 3D and 2D	0:27:52
05	Scalar, Vector & Tensor Quantity	0:04:14
06	Question Number 1	0:03:46
07	Strain and its Types and Strain tensor	0:37:11
08	Hooke's Law and Elongation of Different Bars	0:41:15
09	Elongation Under Multi Uniaxial Loading	0:07:33
10	Question Number 2 to 5	0:14:50
11	Question Number 6 and 7	0:12:30
12	Question Number 8 to 11	0:20:06
13	Series and Parallel Combination of Bars	0:26:52
14	Statically Determinate and Indeterminate Bars	0:28:07
15	Question Number 12 to 14	0:11:40
16	Question Number 15 and 16	0:21:20
17	Question Number 17 and 18	0:18:34
18	Loading w.r.t Time (Gradual, Sudden, Impact)	0:30:57
19	Question Number 19	0:07:14
20	Induce Stress, Permissible Stress and Design on Strength Criteria	0:25:19
21	Question Number 20	0:16:35
22	Question Number 21	0:14:07
23	Isotropic and Homogenous Materials	0:05:21
24	Elastic Constants (E, K, G & Poisson's Ratio)	0:31:32
25	Relation between Elastic Constants (E,K,U,G)	0:19:04
26	Question Number 22 to 24	0:07:44
27	Triaxial Loading and Hydrostatic Loading	0:38:16
28	Question Number 25 and 26	0:15:19
29	Question Number 27 and 28	0:09:23
30	Thermal Stress (Free and Fully Prevented Case)	0:28:39
31	Thermal Stress (Partially Prevented Case)	0:19:04
32	Thermal stress (Special Concept)	0:10:52
33	Question Number 29 and 30	0:07:24
34	Question Number 31 to 36	0:19:04
35	Thermal Stress (Plate and Cube)	0:21:19
36	Question Number 37 and 38	0:04:23
37	Thermal Stress (Series and Parallel Combination)	0:17:08
38	Question Number 39	0:04:01

39	Thermal Stress (Non Uniform Heating and Cooling)	0:11:41
	Engineering and True (Stress and Strain)	
40	Question Number 40 to 42	0:19:14
41	Engineering Stress Strain Curve for Ductile Material	0:08:07 0:36:43
42		
	Stress Strain Curve (Resilience and Toughness)	0:18:38
44 45	Stress Strain Curve (Various Cases) Question Number 43 to 45	0:22:30 0:15:39
_	of Stress and Strain (Mohr's Circle)	0.15.39
01	Introduction	0:06:32
02	Stress Analysis (1D or Uniaxial Stress System)	0:50:42
02	2D or Biaxial or Plane Stress System	0:49:46
03	Question Number 1 to 4	0:49:46
05	Location of Planes (Principal Planes)	0:35:12
06	Mohr's Circles (Hydrostatic Loading) (Special Case-1)	0:34:21
	Mohr's Circles (Pure Torsion or Pure Shear) (Special Case-2)	
07 08	Mohr's Circle (Rotation of Body)	0:04:23
09	Question Number 5 to 9 Question Number 10	0:18:46 0:20:53
10 11	Question Number 10 Question 11 Number to 16	0:20:33
12		
	Design of Component (Mohr's Circle) Question Number 17 to 19	0:22:09
13		0:25:16
14	Strain Analysis (Mohr's circle)	0:22:52
15	Question Number 20 to 22	0:10:33
16	Question Number 23 and 24	0:13:34
17	Mohr's Circle for 3D Stress system	0:07:31
18	Strain Rosette (Only for Mechanical Engineering)	0:15:08
19 Shaar Fa	Question Number 25 (Only for Mechanical Engineering)	0:08:15
	rce and Bending Moment Diagram	0:21:03
01	Introduction Types of Support	
02	Types of Support	0:11:09
03	Types of Beams	0:14:59
04	Types of Loads (w.r.t Area)	0:34:08
05	Calculation of Support Reactions	0:26:39
06	Question Number 1 and 2	0:19:19
07	Calculation of Shear Force and Bending Moment	0:50:51
08 09	Rules to Draw SFD & BDM (Example-1) Example-2 (SFD and BMD with UDL)	0:33:26 0:32:41
10	Example-3 (SFD & BMD)	0:32:41
	Example-4 (SFD & BMD)	0:20:53
11 12	Relation Between BM, SF and Load	0:17:34
13	Condition of Maximum Bending Moment	0:18:18
	Question Number 3	
14		0:17:12
15	Question Number 5 and 6	0:19:00
16	Question Number 5 and 6	0:19:47

17	Question Number 7 and 8	0:11:20
18	Example-5 (SFD & BMD with UVL)	0:30:32
	Question Number 9 and 10	
19	SFD and BMD (Beams with Bracket)	0:06:33
20	Question Number 11 to 13	0:26:03
22	Beam with Internal Hinge (SFD and BMD) Question Number 14 and 15	0:22:56
24	Example-6 (Load Diagram from SFD Diagram) Question Number 16 and 17	0:17:04
25	'	0:13:32
26	Question Number 18 and 19	0:09:34
27	Point of Contraflexure	0:08:13
	of Beam and Shear Centre	0.00.44
01	Introduction Pure Paralling	0:08:44
02	Pure Bending	0:15:30
03	Theory of Pure Bending	0:49:22
04	Limitation of Bending Formula	0:06:26
05	State of Stress due to Bending	0:20:11
06	Question Number 1 and 2	0:18:47
07	Question Number 3 to 5	0:21:26
08	Question Number 6 to 8	0:19:48
09	Design of Beam (Critical Point)	0:19:39
10	Section Modulas (Z)	0:25:31
11	Question Number 9 and 10	0:28:04
12	Combined Stress (Axial + Bending)	0:23:52
13	Eccentric Loading	0:15:37
14	Question Number 11 to 13	0:22:19
15	Shear Stress in Beams	0:12:17
16	Shear Stress Distribution in Rectangular Section	0:11:54
17	Shear Stress Distribution in Triangular Section	0:14:18
18	Shear Stress Distribution in Circular Section	0:08:36
19	Shear Stress Distribution in I- Section	0:25:00
20	Shear Stress Distribution in Other Sections	0:07:42
21	State of Stress (Bending + Shear)	0:05:05
22	Question Number 14 to 16	0:18:23
23	Question Number 17 and 18	0:18:08
24	Question Number 19 and 21	0:14:51
25	Beam of Uniform Strength	0:14:01
26	Shear Center (With Example Question 22) (Only for Civil Engineering)	0:16:09
Torsion	of Shaft	
01	Introduction	0:15:21
02	Sign Convention of Torque and State of Stress	0:16:56
03	Theory of Pure Torsion (Torsion Equation)	0:40:40
04	Polar Section Modulas	0:08:08
05	Design of Shaft Against Torsion	0:22:06
06	Power Transmitted by Shaft	0:06:46

07	Comparision of Axial and Torsion (Very Important Concept)	0:36:05
08	Question Number 1 to 3	0:20:57
09	Polar Section Modulas	0:08:08
10	Design of Shaft Against Torsion	0:22:06
11	Power transmitted by Shaft	0:06:46
12	Question Number 11	0:17:27
13	Comparison of Solid and Hollow Shaft	0:09:41
14	Question Number 14 and 15	0:19:41
15	Combined Stress (Bending + Twisting)	0:27:55
16	Question Number 16 and 17	0:08:01
17	Question Number 18 and 19	0:16:59
Deflection	n of Beams	
01	Introduction	0:13:36
02	Sign Convention of Slope and Deflection	0:13:55
03	Double Integration Method (With Example 1)	0:17:35
04	Double Integration Method (With Example 2)	0:08:16
05	Double Integration Method (With Example 3)	0:18:53
06	Macaulay's Method	0:10:12
07	Moment Area Method (Theorem 1)	0:13:43
08	Moment Area Method (Theorem 2)	0:12:50
09	Moment Area Method (Example 1)	0:04:28
10	Moment Area Method (Example 2)	0:06:55
11	Moment Area Method (Example 3)	0:10:10
12	Limitation of Moment Area Method	0:04:46
13	Conjugate Beam Method	0:10:06
14	Example of Conjugate Beam Method	0:11:06
15	Strain Energy Method (Castigliano's Method)	0:19:38
16	Castigliano's Method (Example 1)	0:09:23
17	Castigliano's Method (Example 2)	0:09:20
18	Castigliano's Method (Example 3)	0:08:42
19	Castigliano's Method (Example 4)	0:14:56
20	Castigliano's Method (Example 5)	0:06:06
21	Method of Superposition	0:11:20
22	Special Case of Superposition (Propped Cantilever)	0:10:07
23	How to select method in exam (Very Important)	0:10:53
24	Question Number 1 to 4	0:23:52
25	Question Number 5 to 7	0:21:22
26	Question Number 8 to 10	0:20:25
27	Question Number 11 to 14	0:24:33
28	Question Number 15 to 17	0:20:56
29	Question Number 18 and 19	0:12:35
30	Maxwell's Reciprocal Theorem	0:07:27
31	Question Number 20	0:12:47
32	Deflection Due to Temperature Change (Only for Civil Engineering)	0:05:28
33	Question Number 21 and 22 (Only for Civil Engineering)	0:07:19
33	Question Number 21 and 22 (Only for Civil Engineering)	0.07.19

Theory of columns		
01	Introduction	0:08:21
02	Slenderness ratio and Types of Columns	0:20:52
03	Critical load or Euler's load	0:18:40
04	Rankine's Gorden theory	0:09:38
05	Question number 1 to 3	0:13:56
06	Question number 4 to 7	0:12:32
Thin Cyli	nder (Only for Mechanical Engineering)	
01	Introduction	0:09:06
02	Stresses in Thin Cylinder	0:20:03
03	State of Stress and Maximum Shear Stress for Thin Cylinder	0:09:23
04	Combined Stress for Thin Cylinder	0:12:21
05	Strains in Thin Cylinder	0:13:00
06	Thin Spheres	0:03:00
07	Question Number 1 to 4	0:11:01
08	Question Number 5 to 6	0:13:39
09	Question Number 7 to 10	0:23:41
Theories	of Failure	
01	Introduction	0:29:00
02	5 Theories of Failure	0:29:28
03	Question Number 1 to 5	0:20:17
Quick rev	vision of Strength of Material	0:28:21

CPM & PERT

PEN-Drive / G-Drive Course & LIVE Classroom Program

Workbook

Civil Engineering

Sr.	Lecture Name	Duration
1	Introduction to CPM-PERT	0:37:23
2	CPM - Critical Path Method	1:07:11
3	Workbook Q.1 - Q.2	0:17:16
4	Workbook Q.3 - Q.6	0:23:54
5	CPM - Floats	0:29:09
6	Workbook Q.7 - Q.8	0:14:36
7	PERT - Program Evaluation & Review Technique	0:23:37
8	Workbook Q.9 - Q.11	0:10:27
9	PERT - Probability	0:21:24
10	Effect of Delay & Earliness (Crash)	0:52:36
11	Workbook Q.12 - Q.13	0:07:02
12	Crashing of Project Network	0:54:54
13	Workbook Q.14	0:11:19

Structural Analysis

PEN-Drive / G-Drive Course & LIVE Classroom Program

Workbook

Civil Engineering

Sr.	Chapter	Pages
1.	Determinacy & Indeterminacy	1
2.	Methods of Structural Analysis	7
3.	Matrix Method of Structural Analysis	15
4.	Influence Line Diagram & Rolling Loads	18
5.	Trusses	22
6.	Arches	29

Sr.	Lecture Name	Duration
Determinacy & Indeterminacy		
0	Introduction and Guidance	0:13:26
1	Types of Supports & External Support Reactions	0:43:06
2	Internal Reactions	0:27:45
3	Released Reactions	0:43:46
4	Degree of Static Indeterminacy for Rigid Structures	0:50:31
5	Workbook Assignment Q.1 to Q.6	0:47:28
6	Shortcut Method for Static Indeterminacy	0:36:15
7	Workbook Assignment Q.8 to Q.11	0:36:56
8	Degree of Static Indeterminacy in Pin Jointed Structures	0:41:04
9	Workbook Assignment Q.12 to Q.15	0:17:52
10	Degree of Kinematic Indeterminacy	1:35:40
11	Workbook Assignment Q.18	0:08:56
12	Degree of Freedom due to Released Reactions	0:32:51
13	Workbook Assignment Q.19	0:22:18
14	Workbook Assignment Q.20	0:12:32
15	Degree of Freedom When Members are Axially Rigid	0:23:35
16	Workbook Assignment Q.21 to Q.22	0:12:53
17	Workbook Assignment Q.23 to Q.24	0:27:33
18	Workbook Assignment Q.25	0:07:41
19	Structural Stability	1:10:19
20	Workbook MCQ & NAT Q.1 to Q.4	0:31:14
21	Workbook MCQ & NAT Q.5 to Q.7	0:15:26
22	Workbook MCQ & NAT Q.8 to Q.11	0:22:57
Methods	f Structural Analysis	
0	Motivation and Guidance	0:14:41
1	Introduction to Methods of Analysis	0:21:31
2	Methods of Indeterminate Analysis	0:20:53
3	Difference between Force Method & Displacement Method	0:46:09
4	Different Values of Slope & Deflection under Different Loading in Different Beams	0:51:15
5	Principle of Superposition	0:21:45
6	Castigliano's Method	0:19:30
7	Workbook Assignment Q.3 to Q.5	0:34:51
8	Betti's Law	0:45:32
9	Workbook Assignment Q.6 to Q.7	0:09:40
10	Maxwell's Reciprocal Theorem	0:15:40
11	Method of Consistent Deformation	0:21:18
12	Workbook Assignment Q.8	0:50:03

13	Workbook Assignment Q.9	0:43:44
14	Workbook Assignment Q.10	0:11:04
15	Workbook Assignment Q.11	0:11:04
16	Principle of Minimum Potential Energy	0:11:13
17	Strain Energy Method	0:30:50
18	Workbook Assignment Q.11 using Strain Energy Method	0:30:30
19	Workbook Assignment Q.12 Workbook Assignment Q.12	0:39:34
20	Concept of Pseudo Force	0:04:48
21	Principle of Virtual Work Method	0:27:13
22	Unit Load Method	0:49:52
23	Workbook Assignment Q.15	0:45:32
24	Three Moments Theorem	0:36:51
25	Workbook Assignment Q.16	0:40:32
26	Three Moments Equation in Fixed end Continuous Beams	0:40:32
27	Workbook Assignment Q.17	0:17:30
28	Three Moments Equation when Supports are at Different Levels	0:23:12
29	Moment Distribution Method	0:08:19
30		0:46:33
31	Carry Over Factor Workbook Assignment Q.18 to Q.19	0:39:44
32	Stiffness	0:35:27
33	Relative Stiffness	0:33.27
34	Distribution Factor	0:11:48
35	Workbook Assignment Q.20 to Q.22	0:49:31
36	Fixed End Moments	0:22:32
37	Workbook Assignment Q.23	1:07:47
38	Workbook Assignment Q.24	1:08:30
39	Shortcut Method of MDM	0:30:02
40	Workbook Assignment Q.25	0:35:34
41	Workbook Assignment Q.26	0:20:01
42	Sway Type Frames	0:26:06
43	Fixed end Moments due to Sinking of Supports	0:28:52
44	Moments & Reactions due to Sway of Frames or Columns	0:28:32
45	Workbook Assignment Q.27 to Q.31	0:29:42
46	Slope Deflection Method	0:25:42
47	Workbook Assignment Q.32	0:52:28
47	Workbook Assignment Q.32 Workbook Assignment Q.33	0:35:37
49	Portal Method of Approximate Analysis	0:29:22
50	Workbook Assignment Q.34	1:11:00
51	Cantilever Method of Approximate Analysis	1:10:08
52	Workbook MCQ & NAT Q.1 to Q.3	0:18:11
53	Workbook MCQ & NAT Q.1 to Q.5 Workbook MCQ & NAT Q.4 to Q.6	0:29:29
54	Workbook MCQ & NAT Q.7	0:14:22
J4	VVOIRDOOK IVICQ & IVAT Q.7	0.14.22

55	Workbook MCQ & NAT Q.8 to Q.10	0:14:53
56	Workbook MCQ & NAT Q.11 to Q.12	0:14:33
57	Workbook MCQ & NAT Q.13	0:15:51
58	Workbook MCQ & NAT Q.13 Workbook MCQ & NAT Q.14	0:23:38
	lethod of Structural Analysis	0.23.38
1	Basic Properties of Matrix	0:24:43
2	Types of Matrix Method	0:20:26
3	Stiffness Matrix Method	1:19:31
4	Workbook Assignment Q.1 to Q.2	0:21:50
5	Workbook Assignment Q.3	0:17:40
6	Workbook Assignment Q.4	0:13:28
7	Workbook Assignment Q.5	0:17:39
8	Workbook Assignment Q.6	0:57:23
9	Flexibility Matrix Method and Workbook Assignment Q.7	0:35:51
10	Workbook Assignment Q.8 to Q.9	0:34:04
11	Workbook Assignment Q.10	0:55:14
12	Workbook MCQ & NAT Q.1	0:21:56
13	Workbook MCQ & NAT Q.2 to Q.3	0:19:47
	E Line Diagram & Rolling Loads	0.13.47
1	Introduction and ILD for Reactions at Supports	0:45:33
2	Workbook Assignment Q.1 to Q.4	0:23:15
3	ILD for Shear Force at any Section	0:27:01
4	Workbook Assignment Q.5	0:08:34
5	ILD for Bending moment at any Section	0:16:59
6	Workbook Assignment Q.6	0:07:32
7	ILD for Different Stress Functions in Overhang Beam	0:37:55
8	Maximum Support Reaction due to Series of Rolling Loads	0:31:38
9	Maximum Shear Force due to Series of Rolling Loads	0:21:18
10	Maximum Bending Moment at any Section due to Series of Loads	0:37:25
11	Workbook Assignment Q.10	0:12:09
12	Absolute Maximum Bending Moment & Workbook Assignment Q.11	0:40:56
13	ILD for different Stress Function in Cantilever Beam	0:30:00
14	Workbook Assignment Q.12	0:31:14
15	Workbook Assignment Q.13	0:46:53
16	Muller Breslau's Principle	1:09:35
17	Workbook Assignment Q.12 - Q.13 using Muller Breslau's Principle	0:24:44
18	Workbook Assignment Q.14	0:19:12
19	Workbook Assignment Q.15	0:14:00
20	Workbook Assignment Q.16	0:16:03
21	Muller Breslau's Principle for Statically Indeterminate Structures	0:43:41
22	Workbook MCQ & NAT Q.1 to Q.2	0:11:42
23	Workbook MCQ & NAT Q.3	0:31:21

24	Workbook MCQ & NAT Q.4 to Q.5	0:19:10
25	Workbook MCQ & NAT Q.6	0:05:46
Trusses		
1	Introduction, Important Concepts & Method of Joints	0:41:07
2	Identification of Zero Force Members	0:21:52
3	Workbook Assignment Q.1 to Q.3	0:24:21
4	Method of Sections & Workbook Assignment Q.4 to Q.6	0:27:59
5	Workbook Assignment Q.7	0:17:38
6	Analysis of Indeterminate Trusses (Part 1)	0:27:13
7	Workbook Assignment Q.8	0:46:18
8	Analysis of Indeterminate Trusses (Part 2)	0:07:56
9	Deflection of Truss	0:39:17
10	Workbook MCQ & NAT Q.1 to Q.3	0:18:15
11	Workbook MCQ & NAT Q.4	0:24:16
12	Workbook MCQ & NAT Q.5	0:17:13
13	Workbook MCQ & NAT Q.6 to Q.7	0:23:04
14	ILD for Top Chords	1:02:57
15	ILD for Bottom Chords	0:21:51
16	ILD for Vertical Members	0:37:06
17	ILD for Diagonal Members	0:40:41
Arches		<u>.</u>
1	Introduction & Types of Arches	0:28:47
2	Analysis of Three Hinge Arch	0:51:00
3	Workbook Assignment Q.1	0:21:39
4	Analysis of Two Hinge Arch	0:41:43
5	Workbook MCQ & NAT Q.1 to Q.5	0:43:03
6	Influence Line Diagram for Three Hinge Arch	0:50:11
7	Influence Line Diagram for Two Hinge Arch	0:16:14
8	Motivation and Guidance - Tera Mera Sath Yahi Tak Tha	0:11:35

Transportation Engineering

PEN-Drive / G-Drive Course & LIVE Classroom Program

Workbook

Civil Engineering

Sr.	Chapter	Pages
1.	Introduction to Highway	1
2.	Geometric Design of Highway	2
3.	Traffic Engineering	12
4.	Pavement Design	21
5.	Highway Material	31
6.	Railway & Airport Engineering	35

Sr.	Lecture Name	Duration
0	How to use PD-GD course for Transportation Engineering?	0:10:59
Introduction of Highway Development		
1	Introduction of Highway Development	0:32:50
2	Road Plans and Patterns	0:19:24
3	Engineering Survey of Road	0:07:27
4	Saturation System (Max Utility System)	0:09:08
5	Workbook Q.1	0:08:11
Geometri	Designs of Road	
1	Pavement Characteristics	0:37:49
2	Camber	0:31:00
3	Shoulder & Width of Pavement	0:21:08
4	Workbook Q.2 - Q.4	0:06:33
5	Kerb	0:10:37
6	Width of Formation	0:06:31
7	Road Margins	0:12:07
8	Sight Distance Consideration (Stopping Sight Distance)	0:46:59
9	Effect of Gradient on Stopping Sight Distance	0:30:52
10	Overtaking Sight Distance & Intermediate Sight Distance	0:26:20
11	Workbook Q.5 - Q.13	0:44:53
12	Superelevation	0:22:02
13	Equillibrium Superelevation	0:14:20
14	Design Superelevation	0:16:15
15	Superelevation when Vehicle is in Stop Position	0:05:13
16	Ruling Minimum Radius	0:06:49
17	Workbook Q.14 - Q.24	0:48:01
18	Extra Widening	0:18:19
19	Condition to Provide Extra Widening	0:16:21
20	Workbook Q.25 - Q.26	0:15:47
21	Transition Curve	0:24:28
22	Horizontal Alignment	0:28:51
23	Length of Transition Curve (Part 1)	0:11:33
24	Length of Transition Curve (Part 2)	0:44:36
25	Workbook Q.27 - Q.29	0:10:44
26	Setback Distance	0:46:48
27	Vertical Alignment	0:10:37
28	Ruling Gradient	0:07:01
29	Compansated Gradient	0:19:15

30	Workbook Q.30	0:06:47
31	Summit Curves	0:15:28
32	Analysis of Summit Curve	0:33:44
33	Length of Summit Curve	0:15:22
34	Workbook Q.31 - Q.35	0:20:12
35	Radius of Curvature of Summit Curve	0:03:22
36	Valley Curve	0:10:28
37	Design Criteria for Valley Curve	0:20:25
38	Workbook Q.36 - Q.37	0:25:17
Traffic Eng		
1	Traffic Characteristics	0:26:14
2	Traffic Volume Study	0:27:12
3	Spot Speed Study	0:35:07
4	Origin and Destination Study	0:14:53
5	Accidental Study (Part 1)	0:34:23
6	Speed Study	0:25:19
7	Workbook Q.1 - Q.3	0:05:04
8	Accidental Study (Part 2)	0:18:27
9	Distribution of Time Headway	0:13:51
10	Traffic Flow Characteristics	0:36:19
11	Workbook Q.4 - Q.6	0:19:22
12	Traffic Capacity	0:31:48
13	Workbook Q.7 - Q.11	0:18:02
14	Traffic Control Devices	0:26:10
15	Designs of Amber Time	0:07:25
16	Terms and Terminologies for Traffic Control Devices	0:37:33
17	Determination of Cycle Length	0:16:21
18	Workbook Q.12 - Q.17	0:39:35
19	Design of Signal Timing	0:13:01
20	Traffic Sign	0:12:06
21	Traffic Operations	0:15:43
22	Intersection Design	0:24:03
23	Workbook Q.18	0:02:24
24	Design of Rotary or Roundabout	0:19:06
25	Practical Capacity of Rotary	0:13:41
26	Design of Parking Study	0:05:40
27	Workbook Q.19 - Q.24	0:15:29
28	Queue and Delay Analysis	0:10:05
29	Workbook Q.25 - Q.26	0:11:28
Design of Pavement		
1	Introduction Design of Pavement	0:19:47
2	Design of Flexible Pavement	0:05:47

3	Design Parameters (Part 1)	0:24:22
4	Design Parameter (Part 2)	0:13:32
5	Method -1 to Design Flexible Method	0:36:56
6	Method - 2 to Design Flexible Pavement	0:17:58
7	Workbook Q.1	0:02:44
8	Method - 3 to Design Flexible Pavement	0:25:27
9	Workbook Q.2 - Q.3	0:06:38
10	Method - 4 to Design Flexible Pavement	0:06:33
11	Method - 5 to Design Flexible Pavement	0:06:39
12	Burmister's Method	0:13:32
13	Radius of Subgrade	0:07:15
14	Stresses	0:21:40
15	Design of Joints	0:15:21
16	Workbook Q.4 - Q.6	0:09:58
Highway	Material	
1	Properties of Highway Material	0:07:23
2	Marshell Method of Mixed Design	0:17:27
3	Test of Road Aggregate (Part 1)	0:24:26
4	Test of Road Aggregate (Part 2)	0:18:44
5	Test of Bitumin	0:09:07
6	Highway Maintenance	0:14:56
7	Workbook Q.1 - Q.8	0:15:28
8	Workbook Q.9 - Q.17	0:21:22
Railway	Engineering	
1	Introduction	0:07:53
2	Coning of Wheel	0:06:44
3	Gradient	0:18:13
4	Grade Compensation	0:11:10
5	Cant or Superelevation	0:08:38
6	Equilibrium Cant	0:07:08
7	Cant Deficiency	0:05:46
Airport E	ngineering	
1	Introduction	0:13:49
2	Design of Runway	0:09:57
3	Correction	0:14:27
4	Taxiway and Exit Taxiway	0:03:43
Some Im	portant Questions	
1	Some Important Questions (Part 1)	0:40:25
2	Some Important Questions (Part 2)	0:32:00