Engineering Mechanics

PEN-Drive / G-Drive Course & LIVE Classroom Program

Workbook

Civil Engineering Mechanical Engineering

Sr.	Chapter	Pages
1.	System of Forces (FBD and Equilibrium of Forces)	1
2.	Plane Trusses	8
3.	Friction	12
4.	Centroid and MOI	15
5.	Kinematics and Kinetics of Particles	17
6.	Work and Energy Principle	21
7.	Impulse and Momentum	25
8.	Impact and Collision	27
9.	Kinematics and Kinetics of Rigid Body	29

Sr.	Lecture Name	Duration
0	How to Study Engineering Mechanics ?	0:15:28
System of	Forces (FBD and Equilibrium of Forces)	
1	Fundamental of Engineering Mechanics (Part1)	0:32:07
2	Fundamental of Engineering Mechanics (Part2)	0:19:18
3	System of Forces (Part1)	0:17:13
4	System of Forces (Part2)	0:28:55
5	FBD and Types of Supports	0:14:59
6	Workbook Questions 4-6	0:15:41
7	Lami's Theorem	0:07:36
8	Reactions in Beams	0:47:08
9	Workbook Questions 7-10	0:32:12
10	Workbook Questions 11-15	0:23:57
11	Workbook Questions 16-20	0:29:28
Plane Trus	sses	
1	Introduction to Trusses	0:14:59
2	Method of Joints	0:26:15
3	Special Cases	0:12:17
4	Method of Section	0:18:23
5	Workbook Questions 1-3	0:18:28
6	Workbook Questions 4-8	0:22:11
7	Workbook Questions 9-12	0:22:57
Friction		
1	Introduction to Friction	0:57:14
2	Application of Friction	0:38:29
3	Workbook Questions 1-5	0:25:59
4	Workbook Questions 6-9	0:30:22
5	Workbook Questions 10-12	0:08:58
Centroid a	and MOI	
1	Introduction to Centroid and Centre of Graviety	0:33:19
2	Introduction to Moment of Inertia	0:30:21
3	Moment of Inertia for Different Shapes	0:22:25
4	Analysis of MOI	0:09:36
5	Question based on MOI	0:16:23
6	Product of Inertia	0:20:35
7	Mass MOI	0:20:00

1	String Constraint Motion	0:47:43
2	Kinematics of Particles and Questions Part1	0:30:21
3	Kinematics of Particles and Questions Part2	0:31:00
4	Rectilinear Motion of Particles	0:19:14
5	Curvilinear Motion of Particles	0:37:45
6	Projectile Motion	0:06:14
7	Workbook Questions 1-4	0:26:46
8	Workbook Questions 5-7	0:21:53
9	Workbook Questions 8-12	0:27:56
/ork an	d Energy Principle	
1	Introduction to Work and Energy	0:29:49
2	Work and Energy Principle	0:19:23
3	Question on Work Energy Principle Part1	0:23:17
4	Question on Work Energy Principle Part2	0:21:15
5	Question on Work Energy Principle Part3	0:24:36
6	Workbook Questions 1-5	0:29:52
7	Workbook Questions 6-9	0:15:45
npulse	and Momentum	
1	Introduction to Impulse and Momentum	0:21:28
2	Questions Based on Impulse and Momentum Part1	0:30:04
3	Questions Based on Impulse and Momentum Part2	0:45:07
4	Angular Momentum	0:28:25
5	Workbook Questions 1-4	0:24:42
npact a	nd Collision	
1	Introduction to Impact and Collision Part1	0:29:51
2	Introduction to Impact and Collision Part2	0:24:34
3	Questions on Impact and Collision	0:34:48
4	Oblique Impact	0:24:15
5	Workbook Questions 1-8	0:35:10
nemat	cs and Kinetics of Rigid Body	
1	Introduction to Kinetics in Rigid Body	0:28:19
2	Introduction to Kinematics of Rigid body	0:30:50
3	Workbook Questions 1-11	0:40:19
4	Workbook Questions 12-17	0:25:05
rinciple	of Virtual Work	
1	Principle of Virtual Work	0:28:12
2	Questions on Principle of Virtual Work Part 1	0:35:06
_		0.00.04

Fluid Mechanics

PEN-Drive / G-Drive Course & LIVE Classroom Program

Workbook

Civil Engineering Mechanical Engineering

Sr.	Chapter	Pages
1.	Fluid Properties	1
2.	Pressure Measurement	5
3.	Hydrostatic Forces	11
4.	Buoyancy & Floatation	15
5.	Liquids in Relative Equilibrium	20
6.	Fluid Kinematics	21
7.	Fluid Dynamics	27
8.	Flow Through Pipes	34
9.	Momentum Equations & Application	39
10.	Laminar & Turbulent Flow	43
11.	Boundary Layer Theory	47
12.	Hydraulic Machines	51

Sr.	Lecture Name	Duration
0	How to Study Fluid Mechanics ?	0:18:00
Fluid Prop	erties	
1	Introduction	0:29:45
2	Basic Concepts of Viscosity	0:26:08
3	Density Specific Weight, Specific Gravity	0:19:48
4	Newton's Law of Viscosity	0:27:08
5	Viscosity (Force and Power) (Parallel Plate)	0:14:54
6	Question Number 1 to 4	0:16:53
7	Question Number 5 and 6	0:11:32
8	Example (Flow between Parallel Plate)	0:10:08
9	Viscosity (Force and Power) (Journal Bearing and Thrust Bearing)	0:23:16
10	Question Number 7	0:06:25
11	Question Number 8 to 10	0:12:05
12	Newtonian and Non-Newtonian Fluids (With Question 11)	0:34:36
13	Variation of Viscosity (With Question 12)	0:23:22
14	Surface Tension	0:28:44
15	Application of Surface Tension	0:16:20
16	Capillarity (With Example)	0:21:51
17	Question Number 13 to 16	0:10:13
18	Bulk Modulus and Compressibility (With Question 17)	0:12:12
19	Vapour Pressure and Cavitation	0:24:15
Pressure	Measurement	
1	Introduction	0:07:59
2	Pressure and its Types	0:36:04
3	Pascal's Law	0:07:01
4	Free Surface	0:11:57
5	Pressure Variation in Fluid	0:54:05
6	Pressure Diagram	0:11:49
7	Pressure Variation in Gases	0:06:36
8	Pressure Head	0:27:21
9	Introduction of Pressure Measuring Devices	0:06:12
10	Barometer	0:14:58
11	Question Number 1 and 2	0:12:47
12	Piezometer	0:12:56
13	Simple ivianometer	0:22:19
14	U-Tube Differential Manometer	0:12:19
15	Question Number 3 and 4	0:11:15
16		0:14:52
17	Question Number / and 8	0:21:50
18	Shortcut for Question Number / and 8	0:07:07
19	Question Number 9	0:07:38
20	Single Column Tube Manometer	0:26:14

21	Inclined Tube Manometer	0:14:29
22	Question Number 10 and 11	0:08:17
Hydrosta	tic Forces	
1	Introduction	0:12:31
2	Hydrostatic Force on Plane Surfaces	0:27:13
3	Special Concept (Hydrostatic Force vs Weight)	0:11:07
4	Center of Pressure	0:18:40
5	Special Concept (Center of Pressure)	0:13:12
6	Hydrostatic Force on Plane Surfaces Due to Multiple Fluids	0:07:26
7	Hinged Plane Gate Subjected to Hydrostatic Force	0:10:39
8	Question Number 1 to 3	0:16:36
9	Question Number 4 to 7	0:25:23
10	Hydrostatic Force on Curved Surfaces	0:21:37
11	Question Number 8 to 10	0:22:16
Buoyand	cy & Floatation	
1	Basic Concepts of Buoyancy	0:32:19
2	Various Cases of Floatation	0:28:55
3	Apparent Weight of Solid	0:07:10
4	Question Number 1 to 4	0:17:17
5	Question Number 5 to 7	0:11:50
6	Question Number 8 to 10	0:12:07
7	Question Number 11	0:09:21
8	Stability of Floating and Submerged Bodies (Part 1)	0:26:58
9	Stability of Floating and Submerged Bodies (Part 2)	0:32:14
10	Example	0:07:24
11	Question Number 11 and 12	0:04:03
Liquids ir	n Relative Equilibrium	·
1	Introduction	0:17:29
2	Translation Motion	0:42:54
3	Example 1	0:15:15
4	Example 2	0:06:35
5	Question Number 1 and 2	0:08:06
6	Rotational Motion (Forced Vortex Motion)	0:31:25
7	Example 3	0:07:59
8	Question Number 3 and 4	0:13:00
Fluid Kin	ematics	·
1	Introduction	0:08:27
2	Types of Flow	0:31:29
3	Description of Flow Pattern	0:15:02
4	Velocity and Acceleration of Fluid	0:19:47
5	Continuity Equation	0:19:03
6	Types of Fluid Motion or Deformation of Fluid	0:10:21
7	Rotational and Irrotational Flow	0:10:15
8	Vorticity	0:07:13
9	Question Number 1 to 4	0:19:55
10	Question number 5 to 8	0:15:19
		0.44.27

12	Question Number 12 and 13	0:12:58
13	Question number 14 to 16	0:09:38
14	Question Number 17 to 20	0:14:16
15	Potential Function	0:16:52
16	Stream Function	0:28:41
17	Question Number 21 to 24	0:08:27
18	Acceleration and Continuity Equation (Polar Coordinate)	0:10:04
19	Question Number 25 to 27	0:14:42
Fluid Dy	namics	·
1	Introduction	0:07:07
2	Euler's Equation and Bernoulli's Equation	0:37:45
3	Question Number 1 and 3	0:17:18
4	Question number 4 (With Important Note Point)	0:17:39
5	Question Number 5 and 6	0:14:46
6	Flow through Siphon	0:13:58
7	Question Number 7 to 9	0:18:10
8	Application of Bernoulli's Equation (Venturimeter)	0:22:50
9	Application of Bernoulli's Equation (Orificemeter and Pitot Tube)	0:17:25
10	Question Number 10 to 11	0:10:10
11	Question Number 12 to 13	0:12:14
12	Question Number 14 to 15	0:06:59
13	Question Number 16 to 18	0:11:54
14	Question Number 19 to 20	0:12:08
Flow Th	rough Pipes	
1	Introduction	0:16:35
2	Darcy Weisbach Equation (Major Head Loss)	0:12:39
3	Minor Head Losses	0:10:56
4	Total Head loss and Power Loss	0:19:42
5	Question Number 1 to 3	0:17:24
6	Question Number 4 to 6	0:24:03
7	Series and Parallel Combination of Pipes	0:30:53
8	Flow Through Bypass	0:16:40
9	Question Number 7 and 8	0:15:44
10	Question Number 9 and 10	0:09:51
11	Power Transmission through Pipe	0:08:25
Momen	tum Equations & Application	
1	Introduction	0:08:53
2	Force on Pipe Bend	0:12:12
3	Force due to Free Jet	0:11:28
4	Question Number 1 to 4	0:14:30
5	Question Number 5 to 7	0:12:30
6	Angular Momentum Equation (Lawn Sprinkler)	0:25:23
7	Question Number 8	0:07:08
Laminar	& Turbulent Flow	· · · ·
1	Introduction	0:09:07
2	Viscous Flow through Pipe	0:23:34
-	Question Number 1 to 2	0.08.24

4	Question Number 4 to 6	0:12:02
5	Laminar Flow between Two Parallel Plate	0:03:01
6	Momentum Correction Factor and Kinetic Correction Factor	0:07:48
Boundar	y Layer Theory	
1	Boundary layer and Boundary Layer Thickness	0:17:11
2	Various Types of Thickness of Boundary Layer	0:21:31
3	Question Number 1 to 3	0:12:10
4	Question Number 4 and 5	0:11:10
5	Boundary Layer Thickness for Laminar and Turbulent Flow	0:05:38
6	Shear Stress and Drag Force	0:08:16
7	Drag Force and Lift Force	0:04:34
8	Question Number 6 to 9	0:15:48
9	Question Number 10 to 12	0:13:36
10	Question Number 13 to 15	0:09:52
11	Boundary Layer Separation	0:11:16
Hydraul	ic Machines	
1	Introduction	0:05:58
2	Pelton Turbine	0:30:03
3	Velocity Triangle for Blades	0:23:52
4	Pelton Turbine (Blade Power and Hydraulic Efficiency)	0:13:02
5	Question Number 1 to 3	0:14:06
6	Specific Speed of Turbine	0:04:31
7	Degree of Reaction	0:03:12
8	Characteristics of Pelton, Francis and Kaplan Turbines	0:18:14
9	Example 1	0:08:00
10	Question Number 4 and 5	0:12:30
11	Question Number 6	0:08:03
12	Draft Tube	0:09:22
13	Model Analysis and Similitude	0:15:58
14	Question Number 7 to 10	0:12:49
15	Similarity of Forces (Dynamic Similarity)	0:16:52
16	Basics of Centrigugal Pump	0:22:01
17	Efficiency in Multi Stage Pump	0:07:24
18	Specific Speed and Model Laws in Pumps	0:03:07
19	Net Positive Suction Head (NPSH)	0:14:04
20	Question Number 11 to 13	0:07:11
21	Question Number 14 and 15	0:06:22
Ouick Po	wision of Eluid Mechanics for GATE Exam	0.23.26

Industrial Engineering

PEN-Drive / G-Drive Course & LIVE Classroom Program

Workbook

Mechanical Engineering

Sr.	Chapter	Pages
1.	Inventory Control/Management	1
2.	Linear Programming & Problem	5
3.	Transportation & Assignment Models	9
4.	CPM & PERT	12
5.	Queuing Theory	20
6.	Forecasting	23
7.	Break Even Analysis	27
8.	Sequencing	30
9.	Line Balancing or Assembly Line	32
10.	MRP	33
11.	Work Study	35

Sr.	Lecture Name	Duration
0	How to study PD-GD course for Industrial Engineering ?	0:12:59
Inventor	y Control	
1	Inventory Control (EOQ Model) Part 1	0:34:37
2	Inventory Control (EOQ Model) Part 2	0:34:41
3	Inventory Control (EOQ Model) Part 3	0:37:06
4	Inventory Control (EOQ Model-Reorder Point(1:03:21
5	Workbook Questions 1-7	0:18:49
6	Inventory Control (Price Discount Model)	0:46:06
7	Workbook Questions 8-9	0:15:44
8	Inventory Control Finite Production Model	0:50:28
9	Inventory Shortage or Backorder Allowed	0:31:03
10	Workbook Question 10	0:03:25
11	Probabilistic Method of Inventory Control	0:19:26
LPP (Line	ar Programming Problem)	
1	Introduction	0:05:32
2	LPP Graphical Method	0:33:36
3	Workbook Questions 1-2	0:13:20
4	Workbook Questions 3-5	0:12:14
5	Simplex Method and Comparison with Graphical Method	0:57:20
6	Untold Concept of LPP Simplex	0:10:56
7	Standard Form of LPP	0:03:09
8	Multiple Optimal, Degenerate, Unbounded & Infeasible Solution	0:38:48
9	Workbook Question Number 6-10	0:15:48
10	Example (Important Question)	0:14:41
11	Duality or Dual of LPP	0:30:31
12	Example (Important Question)	0:25:45
13	Example (Important Question)	0:09:32
14	Workbook Questions 11-12	0:07:30
Transpor	tation and Assignment Problem	
1	Introduction of Transportation Problem	0:25:58
2	North West Corner Rule (NWCR)	0:08:14
3	Least Cost Method (LCM)	0:09:59
4	Vogel's Approximation Method (VAM)	0:15:45
5	(u-v) Method or MODI Method	0:37:05

6	Multiple Optimal and Degeneracy	0:07:23
7	Unbalanced Transportation Problem	0:16:25
8	Workbook Questions 1-3	0:07:42
9	Introduction of Assignment Problem	0:12:34
10	Solution of Assignment Problem By Hungarian Method	0:18:54
11	Workbook Question 4	0:02:10
CPM-PE	रा	·
1	Introduction to CPM-PERT	0:37:23
2	CPM - Critical Path Method	1:07:11
3	Workbook Q.1 - Q.2	0:17:16
4	Workbook Q.3 - Q.6	0:23:54
5	CPM - Floats	0:29:09
6	Workbook Q.7 - Q.8	0:14:36
7	PERT - Program Evaluation & Review Technique	0:23:37
8	Workbook Q.9 - Q.11	0:10:27
9	PERT - Probability	0:21:24
10	Effect of Delay & Earliness (Crash)	0:52:36
11	Workbook Q.12 - Q.13	0:07:02
12	Crashing of Project Network	0:54:54
13	Workbook Q.14	0:11:19
Waiting	Line Theory (Queuing Theory)	
1	Introduction	0:12:19
2	Some Terms related to Queue Theory	0:20:43
3	Probability Formula in Queue Theory	0:21:51
4	Workbook Questions 4	0:16:21
5	Some Important Formula of Queue Theory	0:05:01
6	Workbook Questions 5-7	0:08:25
Forecast	ing	
1	Introduction	0:16:32
2	Simple Moving Average method	0:05:51
3	Weighted Moving Average method	0:04:37
4	Exponential Smoothing method	0:26:09
5	Casual method	0:14:38
6	Workbook Questions 1-5	0:09:20
7	Qualitative Method	0:12:40
Break Ev	en Analysis	
1	Introduction	0:17:51
2	Formula For Break Even Analysis	0.02.23

3	Workbook Questions 1-4	0:22:44
Sequend	ing	·
1	Introduction	0:07:48
2	Sequencing by SPT Rule (Shortest Processing time Rule)	0:15:26
3	Sequencing by EDD Rule (Earliest Due date Rule)	0:11:44
4	Sequencing of N-Jobs on Two Machines by Johnson's Algorithm	0:09:19
5	Shortcut to Solve Sequencing of N-Jobs on Two Machine	0:04:48
Line Bal	ance or Assembly Line	
1	Line Efficiency and Balance Delay	0:17:05
2	Workbook Questions 1-3	0:08:26
Materia	Requirement Planning (MRP)	
1	Introduction	0:21:50
2	Example	0:11:10
3	Example	0:22:00
Work St	udy	
1	Types of Times	0:10:16
2	Example	0:06:23
Quick R	evision	0:27:47

Machine Design

PEN-Drive / G-Drive Course & LIVE Classroom Program

Workbook

Mechanical Engineering

Sr.	Chapter	Pages
1.	Design Against Static Load (Theory of Failure)	1
2.	Design Against Dynamic Load (Failure Strength & S-N diagram)	6
3.	Joints (Bolted, Riveted & Welded)	10
4.	Clutches	17
5.	Brakes	21
6.	Springs	26
7.	Bearings	31
8.	Gears	35

Sr.	Lecture Information	Duration
0	How to study PD-GD course for Machine Design ?	0:18:52
Design Against Static Load (Theory of Failure)		
1	Introduction to Design	0:45:56
2	Fundamental Concepts	1:17:39
3	Mohr's Circle for 3D Stress	0:18:24
4	Principal Stress Theory	0:19:30
5	Maximum Shear Stress Theory	0:35:46
6	Maximum Distortion Energy Theory	0:20:03
7	Maximum Principal Strain Theory	0:18:17
8	Maximum Strain Energy Theory	0:19:05
9	Mohr's Columb Theory	0:18:17
10	Workbook Questions (Part 1)	0:40:38
11	Workbook Questions (Part 2)	0:37:28
Design A	Against Dynamic Load (Failure Strength & S-N diagram)	
1	Theoretical Stress Concertation Factor	0:32:55
2	Fatigue Failure	0:14:46
3	Analysis of Fatigue (Part 1)	0:10:51
4	Analysis of Fatigue (Part 2)	0:08:54
5	Fluctuating Stresses	0:14:11
6	Endurance Limit	0:33:23
7	Fatigue Stress Concentration Factor and Notch Sensitivity	0:18:30
8	Corrected Endurance Limit	0:22:48
9	Design for Infinite Life	0:50:27
10	Concepts and Example on Fatigue Failure	0:46:12
11	Concepts on Soderberg Goodman and Gereber Equation	0:36:31
12	Workbook Questions 1-3	0:27:15
13	Workbook Questions 4-14	1:03:16
14	Workbook Question 15	0:15:09
15	Workbook Questions 16-17	0:07:22
Joints (B	olted, Riveted & Welded)	
1	Different Type of Joints	0:18:20
2	Riveted Joints	0:21:36
3	Important Terms in Riveted Joints	0:38:07

4	Design of Riveted Joint	0:44:53
5	Example for Riveted Joint	0:19:57
6	Design of Rivet for Plates with Different Thickness	0:06:15
7	Design For Boiler Joints (Butt Joints)	0:17:02
8	Design For Boiler Joints (Lap Joints)	0:20:00
9	Design of Rives for Eccentric Load	0:29:41
10	Example of Riveted Joint under Eccentric Load	0:40:34
11	Important Concepts	0:28:20
12	Workbook Questions	0:24:57
13	Bolted Joints	0:49:27
14	Bolted Joint Subjected to Axial Load	0:26:00
15	Bolted Joint Subjected to Shear	0:22:01
16	Bolted Joint Subjected to Eccentric Loading	0:24:31
17	Important Concepts on Bolts	0:18;45
18	Workbook Questions 6-8	0:55:04
19	Workbook Questions 9-16	1:08:03
20	Welded Joints	0:36:03
21	Fillet Welds	0:42:26
22	Axially Loaded Unsymmetrical Welds	0:19:10
23	Eccentrically Loaded Welds	0:07:22
24	Welds Subjected to Torsion	0:18:45
25	Workbook Questions 18-24	0:30:44
Clutches	5	
1	Introduction to Clutches	0:11:35
2	Torque Transmitting Capacity	0:29:25
3	Concept of Single Plate Clutch and Multiplate Clutch (Part 1)	0:08:12
4	Concept of Single Plate Clutch and Multiplate Clutch (Part 2)	0:29:46
5	Maximum Torque Carrying Capacity of Single Plate Clutch	0:07:36
6	Cone Clutch	0:15:26
7	Comparison between UPT and UWT and Friction Radius	0:14:50
8	Centrifugal Clutch	0:14:22
9	Energy Equation and Energy Loss in a Friction Clutch	0:23:48
10	Workbook Questions 1-4	0:28:41
11	Workbook Questions 5-11	0:29:45
Brakes		
1	Introduction to Brakes	0:12:15
2	Drum and Shoe Brakes	0:24:08

	1	1
3	Band Brakes	0:28:42
4	Workbook Questions 1-3	0:12:30
5	Workbook Questions 4-11	0:53:33
6	Workbook Questions 12-14	0:19:24
Springs		
1	Spring and Important Definitions	0:39:06
2	Stresses in Helical Compression Springs	0:40:38
3	Workbook Questions 1-5	0:09:52
4	Workbook Questions 6-10	0:07:27
5	Workbook Questions 11-13	0:17:19
6	Workbook Questions 14-17	0:17:05
Bearings	·	
1	Introduction to Bearing	0:11:38
2	Rolling Contact Bearing	0:21:49
3	Strobeck's Equation	0:15:32
4	Load Life Relationship	0:27:52
5	Design of Rolling Element Bearing under Cyclic Loading	0:16:17
6	Workbook Questions 1-13	0:49:15
7	Sliding Contact Bearing	0:29:00
8	Journal Bearing	0:26:13
9	Power Loss and Frictional Torque	0:12:09
10	McKee Investigation	0:19:57
11	Petroff's Equation	0:04:25
12	Somerfield Number	0:03:34
13	Mass Flow Rate of Artificial Cooling	0:31:16
14	Workbook Questions 14-21	0:40:21
Gears	1	I
1	Beam Strength of Gear	0:15:56
2	Force Analysis	0:19:55
3	Force Analysis on Helical Gear	0:20:57
4	Workbook Questions 1-8	0:39:12

Production Engineering

PEN-Drive / G-Drive Course & LIVE Classroom Program

Workbook

Mechanical Engineering

Sr.	Chapter	Pages
1.	Machining	1
2.	Casting	15
3.	Welding	29
4.	Sheet Metal Working	42
5.	Forming	46
6.	Computer Integrated Manufacturing	52
7.	Metrology & Inspection	57
8.	Unconventional Machining	61
9.	Material Science	66

Sr.	Lecture Name	Duration
0	How to use PD-GD Course for Production Engineering ?	0:08:52
Machinir	g or Metal Cutting	
1	Introduction of Metal Cutting	0:13:04
2	Difference Between Conventional & Unconventional Machining	0:07:50
3	Types of Tools & Types of Machining by (SPCT)	0:14:56
4	Orthogonal Shaping (Introduction)	0:25:34
5	Workbook Q.1-Q.2	0:09:41
6	Orthogonal Shaping (Velocity triangle & Chip thickness ratio)	0:31:48
7	Shear Stress, Shear Force & Shear Strain (Cutting)	0:28:42
8	Mechanics of Metal Cutting	0:33:21
9	Specific Cutting Energy (U)	0:08:16
10	Workbook Q.3-Q.6	0:12:23
11	Workbook Q.7-Q.8	0:08:44
12	Workbook Q.9-Q.12	0:11:39
13	Earnest & Merchanti Theory or Condition of Minimum Power	0:16:03
14	Workbook Q.13	0:03:53
15	Generatrix & Directrix	0:06:24
16	Turning Operation	0:14:30
17	Orthogonal Straight Turning	0:24:51
18	Workbook Q.14-Q.16	0:11:39
19	Workbook Q.17-Q.20	0:14:46
20	Workbook Q.21-Q.23	0:15:30
21	Workbook Q.24-Q.27	0:15:14
22	Dry Friction & Sticky Friction	0:04:09
23	Example (with Important Discussion)	0:25:28
24	Workbook Q.28-Q.34	0:27:10
25	Break Even Cutting Speed	0:21:03
26	Workbook Q.35-Q.37	0:08:33
27	Modified Taylor's Tool Life Equation	0:05:43
28	Workbook Q.38-Q.39	0:14:34
29	Tool Life	0:39:53
30	Number of Regrinds Needed	0:14:26
31	Workbook Q.40-Q.42	0:10:22
32	Economics of Machining (Part 1)	0:52:20
33	Economics of Machining (Part 2)	0:18:49
34	Economics of Machining (Part 3)	0:08:47
35	Example (Economics of Machining)	0:05:10
36	Workbook Q.43-Q.48	0:25:39
37	Drilling Operation	0:21:59

38	Workbook Q.49-Q.52	0:16:14
39	Workbook Q.53-Q.56	0:18:13
40	Example (Drilling Operation)	0:20:21
41	Milling (Plane Milling or Slab Milling)	0:24:09
42	Workbook Q.57-Q.61	0:13:38
43	Workbook Q.62-Q.67	0:12:31
44	Tool Geometry & Tool Signature of Single Point Cutting Tool	0:19:42
45	ASA Tool Signature (American Standards Association)	0:38:19
46	Oblique Turning	0:36:08
47	Workbook Q.68	0:03:28
48	Surface Roughness or Surface Finish	0:21:31
49	Workbook Q.69-Q.71	0:11:50
50	Workbook Q.72-Q.73	0:11:20
51	Heat Generation & Heat Dissipation	0:19:34
52	Types of Chips	0:18:03
53	Cutting Tool Properties	0:13:41
54	Cutting Tool Materials	0:19:41
Casting		
1	Introduction of Casting	0:22:29
2	Broad Steps in Sand Casting	0:30:03
3	Cooling Curve for Sand Casting	0:34:41
4	Workbook Q.1	0:05:22
5	Pattern Design	0:51:09
6	Workbook Q.2-Q.3	0:22:23
7	Workbook Q.4-Q.5	0:05:59
8	Gating System Design (Basic) (Part 1)	0:41:57
9	Gating System Design (Top Gate) (Part 2)	0:44:25
10	Gating System Design (Bottom Gate) (Part 3)	0:29:04
11	Gating System Design (Aspiration Effect) (Part 4)	0:35:29
12	Gating System Design (Gating Ratio) (Part 5)	0:08:10
13	Workbook Q.6	0:10:13
14	Workbook Q.7-Q.8	0:12:46
15	Example 1	0:14:11
16	Workbook Q.9-Q.13	0:17:54
17	Workbook Q.14-Q.15	0:18:57
18	Solidification Time or Chvorinov's Rule (t)	0:24:29
19	Workbook Q.16-Q.19	0:17:23
20	Workbook Q.20-Q.23	0:22:43
21	Basic Concept of Riser Design	0:14:12
22	Riser Design (Basic Method) (Part 1)	0:18:09
23	Optimum Size of Cylindrical Riser	0:19:46
24	Types of Riser (Location) & (Best shap of Riser)	0:33:29
25	Example 2	0:10:23
26	Workbook 0.24-0.26	0:14:16

27	Modulus Method of Riser Design	0:09:04
28	Workbook Q.27	0:10:10
29	Caines Method of Riser Design	0:18:53
30	NRL (Novel Research Laboratory) Method or Shap Factor Method of Riser Design	0:14:13
31	Workbook Q.28-Q.29	0:09:44
32	Core, Core Print & Chaplets	0:33:51
33	Workbook Q.30-Q.31	0:06:55
34	Moulding Sand & It's Types	0:20:29
35	Properties of Moulding Sand	0:07:55
36	Permeability	0:40:17
37	Workbook Q.32	0:02:55
38	Sand Casting Defects	0:33:47
39	Chills & Padding & Skin Thickness	0:09:22
40	Example 3	0:03:14
41	Expendable & NonExpendable Mould & Pattern	0:07:10
42	Special Casting Processes	0:45:59
loining P	rocess (Welding)	1
1	Introduction	0:15:09
2	Types of Welding	0:25:56
3	Arc Welding (Part 1)	0:29:55
4	Arc Welding Types of Polarity (Part 2)	0:18:39
5	Arc Characteristic and Power Source Characteristic (Part 3)	0:26:25
6	Linear Power Source Characteristic (Part 4)	0:40:35
7	Workbook Q.1-Q.2	0:11:40
8	Workbook Q.3	0:09:51
9	Condition of Max Power (Optimum Arc Length, Current and Voltage)	0:16:43
10	Workbook Q.4-Q.5	0:13:54
11	Welding Efficiency and Duty Cycle	0:26:14
12	Heat Input	0:20:36
13	Workbook Q.6-Q.7	0:08:34
14	Workbook Q.8-Q.10	0:11:08
15	Number of Electrodes Required in Arc Welding	0:14:50
16	Workbook Q.11	0:06:37
17	Resistance Welding	0:46:36
18	Workbook Q.12-Q.14	0:12:06
19	Workbook Q.15-Q.16	0:18:43
20	Workbook Q.17-Q.20	0:11:59
21	Workbook Q.21-Q.23	0:14:28
22	Projection Welding and Seam Welding	0:05:50
23	Types of Arc Welding (Part 1)	0:42:11
24	Types of Arc Welding (Part 2)	0:26:22
25	Workbook Q.24	0:15:52
26	Workbook Q.25-Q.26	0:06:41
27	Various Other Types of Welding	0.22.08

28	Gas Welding	0:21:25
29	Heat Affected Zone (HAZ)	0:07:41
30	Difference Between Welding, Soldering and Brazing	0:24:03
31	Autogenous, Homogenous and Hetrogenous Welding	0:03:01
Sheet M	etal Working	
1	Introduction	0:19:24
2	Types of Punch	0:14:13
3	Force and Energy Requirement During Punching or Blanking	0:40:26
4	Example 01	0:06:34
5	Workbook Q.1-Q.4	0:11:19
6	Utilization of Plate in Blanking Operation	0:19:32
7	Workbook Q.5	0:06:16
8	Deep Drawing	0:12:57
9	Workbook Q.6-Q.7	0:06:26
Metal Fo	prming	•
1	Introduction	0:15:11
2	Rolling	0:39:20
3	Condition of Self Entry	0:30:10
4	Workbook Q.1-Q.3	0:07:04
5	Workbook Q.4-Q.7	0:11:08
6	Workbook Q.8-Q.9	0:05:44
7	Force and Power Requirement for Rolling Operation	0:11:34
8	Workbook Q.10-Q.11	0:09:12
9	Forging (Stress Strain)	0:16:35
10	Workbook Q.12-Q.15	0:10:10
11	Workbook Q.16-Q.18	0:09:24
12	Stress Strain Curve	1:17:52
13	Workbook Q.19	0:06:59
14	Flow Curve	0:17:06
15	Workbook Q.21-Q.22	0:06:10
16	Difference between Cold Working and Hot Working	0:05:39
17	Strain Hardening or Work Hardening	0:17:26
18	Workbook Q.22-Q.23	0:09:47
19	Workbook Q.24-Q.26	0:07:22
20	Extrusion and Wire Drawing	0:15:28
21	Workbook Q.27-Q.31	0:10:28
22	Workbook Q.32-Q.33	0:10:05
23	Bending	0:06:26
24	Workbook Q.34	0:03:06
Compute	er Integrated Manufacturing (CIM)	I
1	Introduction	0:05:58
2	Computer Numeric Control	0:41:36
3	Workbook Q.1-Q.4	0:12:36
1	Warkbook O 5-O 12	0.12.30

Metrolo	gy	
1	Introduction	0:07:21
2	Limits and Tolerance	0:12:10
3	Fundamental Deviation	0:11:35
4	Indian Standard Code	0:14:21
5	Types of Fits	0:24:39
6	Workbook Q.1-Q.4	0:11:12
7	Calculation of Unit Tolerance and Tolerance	0:04:24
8	Workbook Q.5	0:11:10
9	Tolerance Accumulation	0:02:21
10	Workbook Q.6	0:06:25
11	Limit Gauge	0:26:09
12	Workbook Q.7	0:03:18
Unconve	ntional Machining	·
1	Introduction	0:09:25
2	Electro Chemical Machining (ECO)	0:18:23
3	Workbook Q.1-Q.5	0:16:53
4	Electric Discharge Machine	0:12:11
5	Workbook Q.6-Q.10	0:16:38
6	Mechanism of Removal of Metal for Unconventional Machining	0:06:53
Materia	Science	
1	Introduction	0:30:00
2	Cooling Curve of Pure Iron	0:04:11
3	Iron - Carbon Equilibrium Phase Diagram	0:15:55
4	Binary Alloys	0:06:14
5	Workbook Q.1-Q.2	0:06:18
6	Heat Treatment	0:15:10
7	T-T-T Diagram	0:10:10

Strength of Material

PEN-Drive / G-Drive Course & LIVE Classroom Program

Workbook

Civil Engineering Mechanical Engineering

Sr.	Chapter	Pages
1.	Simple Stress-Strain and Elastic Constants	1
2.	Principal Stress-Strain and Mohr's Circle	12
3.	Shear Force and Bending Moment	19
4.	Bending of Beam and Shear Centre	27
5.	Torsion	37
6.	Deflection of Beam and Strain Energy	43
7.	Columns	52
8.	Thin Cylinder	55
9.	Theory of Failure	58

Sr.	Lecture Name	Duration
00	How to Study Strength of Material ?	0:24:00
Stress - Strain and Elastic Constants		
01	Introduction of SOM	0:35:03
02	Stress and its Types	0:44:23
03	Special Concept on Stress	0:14:09
04	Stress Tensor for 3D and 2D	0:27:52
05	Scalar, Vector & Tensor Quantity	0:04:14
06	Question Number 1	0:03:46
07	Strain and its Types and Strain tensor	0:37:11
08	Hooke's Law and Elongation of Different Bars	0:41:15
09	Elongation Under Multi Uniaxial Loading	0:07:33
10	Question Number 2 to 5	0:14:50
11	Question Number 6 and 7	0:12:30
12	Question Number 8 to 11	0:20:06
13	Series and Parallel Combination of Bars	0:26:52
14	Statically Determinate and Indeterminate Bars	0:28:07
15	Question Number 12 to 14	0:11:40
16	Question Number 15 and 16	0:21:20
17	Question Number 17 and 18	0:18:34
18	Loading w.r.t Time (Gradual, Sudden, Impact)	0:30:57
19	Question Number 19	0:07:14
20	Induce Stress, Permissible Stress and Design on Strength Criteria	0:25:19
21	Question Number 20	0:16:35
22	Question Number 21	0:14:07
23	Isotropic and Homogenous Materials	0:05:21
24	Elastic Constants (E, K, G & Poisson's Ratio)	0:31:32
25	Relation between Elastic Constants (E,K,U,G)	0:19:04
26	Question Number 22 to 24	0:07:44
27	Triaxial Loading and Hydrostatic Loading	0:38:16
28	Question Number 25 and 26	0:15:19
29	Question Number 27 and 28	0:09:23
30	Thermal Stress (Free and Fully Prevented Case)	0:28:39
31	Thermal Stress (Partially Prevented Case)	0:19:04
32	Thermal stress (Special Concept)	0:10:52
33	Question Number 29 and 30	0:07:24
34	Question Number 31 to 36	0:19:04
35	Thermal Stress (Plate and Cube)	0:21:19
36	Question Number 37 and 38	0:04:23
37	Thermal Stress (Series and Parallel Combination)	0:17:08
38	Question Number 39	0:04:01

39	Thermal Stress (Non Uniform Heating and Cooling)	0:11:41
40	Engineering and True (Stress and Strain)	0:19:14
41	Question Number 40 to 42	0:08:07
42	Engineering Stress Strain Curve for Ductile Material	0:36:43
43	Stress Strain Curve (Resilience and Toughness)	0:18:38
44	Stress Strain Curve (Various Cases)	0:22:30
45	Question Number 43 to 45	0:15:39
Analysis	of Stress and Strain (Mohr's Circle)	
01	Introduction	0:06:32
02	Stress Analysis (1D or Uniaxial Stress System)	0:50:42
03	2D or Biaxial or Plane Stress System	0:49:46
04	Question Number 1 to 4	0:13:57
05	Location of Planes (Principal Planes)	0:35:12
06	Mohr's Circles (Hydrostatic Loading) (Special Case-1)	0:34:21
07	Mohr's Circles (Pure Torsion or Pure Shear) (Special Case-2)	0:04:23
08	Mohr's Circle (Rotation of Body)	0:10:47
09	Question Number 5 to 9	0:18:46
10	Question Number 10	0:20:53
11	Question 11 Number to 16	0:34:47
12	Design of Component (Mohr's Circle)	0:22:09
13	Question Number 17 to 19	0:25:16
14	Strain Analysis (Mohr's circle)	0:22:52
15	Question Number 20 to 22	0:10:33
16	Question Number 23 and 24	0:13:34
17	Mohr's Circle for 3D Stress system	0:07:31
18	Strain Rosette (Only for Mechanical Engineering)	0:15:08
19	Question Number 25 (Only for Mechanical Engineering)	0:08:15
Shear Fo	orce and Bending Moment Diagram	
01	Introduction	0:21:03
02	Types of Support	0:11:09
03	Types of Beams	0:14:59
04	Types of Loads (w.r.t Area)	0:34:08
05	Calculation of Support Reactions	0:26:39
06	Question Number 1 and 2	0:19:19
07	Calculation of Shear Force and Bending Moment	0:50:51
08	Rules to Draw SFD & BDM (Example-1)	0:33:26
09	Example-2 (SFD and BMD with UDL)	0:32:41
10	Example-3 (SFD & BMD)	0:20:53
11	Example-4 (SFD & BMD)	0:17:34
12	Relation Between BM, SF and Load	0:18:18
13	Condition of Maximum Bending Moment	0:12:15
14	Question Number 3	0:17:12
15	Question Number 4	0:19:00
16	Question Number 5 and 6	0:19:47

17	Question Number 7 and 8	0:11:20
18	Example-5 (SFD & BMD with UVL)	0:30:32
19	Question Number 9 and 10	0:06:33
20	SFD and BMD (Beams with Bracket)	0:26:03
21	Question Number 11 to 13	0:21:06
22	Beam with Internal Hinge (SFD and BMD)	0:22:56
23	Question Number 14 and 15	0:23:48
24	Example-6 (Load Diagram from SFD Diagram)	0:17:04
25	Question Number 16 and 17	0:13:32
26	Question Number 18 and 19	0:09:34
27	Point of Contraflexure	0:08:13
Bending	of Beam and Shear Centre	
01	Introduction	0:08:44
02	Pure Bending	0:15:30
03	Theory of Pure Bending	0:49:22
04	Limitation of Bending Formula	0:06:26
05	State of Stress due to Bending	0:20:11
06	Question Number 1 and 2	0:18:47
07	Question Number 3 to 5	0:21:26
08	Question Number 6 to 8	0:19:48
09	Design of Beam (Critical Point)	0:19:39
10	Section Modulas (Z)	0:25:31
11	Question Number 9 and 10	0:28:04
12	Combined Stress (Axial + Bending)	0:23:52
13	Eccentric Loading	0:15:37
14	Question Number 11 to 13	0:22:19
15	Shear Stress in Beams	0:12:17
16	Shear Stress Distribution in Rectangular Section	0:11:54
17	Shear Stress Distribution in Triangular Section	0:14:18
18	Shear Stress Distribution in Circular Section	0:08:36
19	Shear Stress Distribution in I- Section	0:25:00
20	Shear Stress Distribution in Other Sections	0:07:42
21	State of Stress (Bending + Shear)	0:05:05
22	Question Number 14 to 16	0:18:23
23	Question Number 17 and 18	0:18:08
24	Question Number 19 and 21	0:14:51
25	Beam of Uniform Strength	0:14:01
26	Shear Center (With Example Question 22) (Only for Civil Engineering)	0:16:09
Torsion	of Shaft	ŀ
01	Introduction	0:15:21
02	Sign Convention of Torque and State of Stress	0:16:56
03	Theory of Pure Torsion (Torsion Equation)	0:40:40
04	Polar Section Modulas	0:08:08
05	Design of Shaft Against Torsion	0:22:06
06	Dowor Transmitted by Shaft	0.06.46

07	Comparision of Axial and Torsion (Very Important Concept)	0:36:05
08	Question Number 1 to 3	0:20:57
09	Polar Section Modulas	0:08:08
10	Design of Shaft Against Torsion	0:22:06
11	Power transmitted by Shaft	0:06:46
12	Question Number 11	0:17:27
13	Comparison of Solid and Hollow Shaft	0:09:41
14	Question Number 14 and 15	0:19:41
15	Combined Stress (Bending + Twisting)	0:27:55
16	Question Number 16 and 17	0:08:01
17	Question Number 18 and 19	0:16:59
Deflectic	on of Beams	
01	Introduction	0:13:36
02	Sign Convention of Slope and Deflection	0:13:55
03	Double Integration Method (With Example 1)	0:17:35
04	Double Integration Method (With Example 2)	0:08:16
05	Double Integration Method (With Example 3)	0:18:53
06	Macaulay's Method	0:10:12
07	Moment Area Method (Theorem 1)	0:13:43
08	Moment Area Method (Theorem 2)	0:12:50
09	Moment Area Method (Example 1)	0:04:28
10	Moment Area Method (Example 2)	0:06:55
11	Moment Area Method (Example 3)	0:10:10
12	Limitation of Moment Area Method	0:04:46
13	Conjugate Beam Method	0:10:06
14	Example of Conjugate Beam Method	0:11:06
15	Strain Energy Method (Castigliano's Method)	0:19:38
16	Castigliano's Method (Example 1)	0:09:23
17	Castigliano's Method (Example 2)	0:09:20
18	Castigliano's Method (Example 3)	0:08:42
19	Castigliano's Method (Example 4)	0:14:56
20	Castigliano's Method (Example 5)	0:06:06
21	Method of Superposition	0:11:20
22	Special Case of Superposition (Propped Cantilever)	0:10:07
23	How to select method in exam (Very Important)	0:10:53
24	Question Number 1 to 4	0:23:52
25	Question Number 5 to 7	0:21:22
26	Question Number 8 to 10	0:20:25
27	Question Number 11 to 14	0:24:33
28	Question Number 15 to 17	0:20:56
29	Question Number 18 and 19	0:12:35
30	Maxwell's Reciprocal Theorem	0:07:27
31	Question Number 20	0:12:47
32	Deflection Due to Temperature Change (Only for Civil Engineering)	0:05:28
33	Question Number 21 and 22 (Only for Civil Engineering)	0:07:19

Theory o	f columns	
01	Introduction	0:08:21
02	Slenderness ratio and Types of Columns	0:20:52
03	Critical load or Euler's load	0:18:40
04	Rankine's Gorden theory	0:09:38
05	Question number 1 to 3	0:13:56
06	Question number 4 to 7	0:12:32
Thin Cyli	nder (Only for Mechanical Engineering)	
01	Introduction	0:09:06
02	Stresses in Thin Cylinder	0:20:03
03	State of Stress and Maximum Shear Stress for Thin Cylinder	0:09:23
04	Combined Stress for Thin Cylinder	0:12:21
05	Strains in Thin Cylinder	0:13:00
06	Thin Spheres	0:03:00
07	Question Number 1 to 4	0:11:01
08	Question Number 5 to 6	0:13:39
09	Question Number 7 to 10	0:23:41
Theorie	s of Failure	
01	Introduction	0:29:00
02	5 Theories of Failure	0:29:28
03	Question Number 1 to 5	0:20:17
Quick re	vision of Strength of Material	0:28:21

Edition 2019 **Heat Transfer** PEN-Drive / G-Drive Course & LIVE Classroom Program Workbook Mechanical Engineering **GATE / ESE / PSUs GATE ACADEM** Α т steps to success... Since 2004

Sr.	Chapter	Pages
1.	Conduction	1
2.	Heat Generation and Fins	10
3.	Unsteady State Heat Conduction	15
4.	Convection	19
5.	Heat Exchanger	26
6.	Radiation Heat Transfer	32

Sr.	Lecture Name	Duration
Introducti	on	
0	How to Study Heat Transfer ?	0:23:47
1	Basics of Heat Transfer	0:21:59
2	Modes of Heat Transfer	0:28:47
3	Governing Laws	0:17:55
4	Heat Generation and Steady State	0:27:55
Conductio	n	
1	Mechanism of Conduction and Fourier Law	0:27:34
2	Thermal Conductivity	0:29:58
3	Variable Thermal Conductivity	0:46:20
4	General Heat Conduction Equation in Rectangular Coordinates	0:52:54
5	Time Rate Approach for the Solution	0:04:44
6	General Heat Conduction Equation in Cylindrical Coordinates	0:18:06
7	General Heat Conduction Equation in Spherical Coordinates	0:26:26
8	Temperature Distribution in Plane Wall	0:13:22
9	Temperature Distribution in Cylindrical Wall	0:14:57
10	Temperature Distribution in Spherical Wall	0:15:31
11	Thermal Resistance & Electrical Analogy	0:12:19
12	Thermal Resistance for Conduction in Walls and Convection	0:23:35
13	Composite Walls	1:44:49
14	Perfect Insulation (Adiabatic Surface)	0:05:27
15	Examples on Composite Walls	0:36:21
16	Example on Axial Heat Flow in Cylindrical Objects	0:21:45
17	Insulation and Critical Radius of Insulation	0:32:22
18	Important Concepts from Critical Radius on Insulation	0:26:00
19	Mean Area	0:09:58
20	Workbook Questions 1-11	0:17:10
21	Workbook Questions 12-16	0:36:04
22	Workbook Questions 17-19	0:19:48
23	Workbook Questions 20-23	0:27:47
24	Workbook Questions 24-25	0:07:31
25	Workbook Questions 26-28	0:13:24
26	Workbook Questions 29-31	0:14:03
27	Workbook Questions 32-35	0:17:37
28	Workbook Questions 36-38	0:17:12
29	Workbook Question 39	0:09:39

30	Workbook Questions 40-43	0:12:09
31	Workbook Question 44	0:16:06
Heat Ger	neration and Fins	
1	One Dimensional Steady State Conduction With Heat Generation (Plane wall)	0:16:04
2	Heat Generation In Plane Wall Case 1	0:31:01
3	Heat Generation In Plane Wall Case 2	0:07:58
4	Heat Generation In Solid Cylinder	0:15:09
5	Heat Generation Hollow Cylinder	0:10:26
6	Heat Generation Solid Sphere	0:27:21
7	Non Uniform Heat Generation With Example	0:24:30
8	Workbook Question 1 to 4	0:16:38
9	Workbook Question 5 to 6	0:11:00
10	Workbook Question 7 to 8	0:10:22
11	Workbook Question 9	0:11:31
12	Introduction to Fins	0:16:18
13	Governing Equation of Fins	0:18:14
14	Types of Fins + Long Fins	0:22:52
15	Short Fin With Insulated Tip	0:23:03
16	Short Fin with Heat Transfer at The Tip	0:19:58
17	A Rod Connected to Two Reservoir	0:19:15
18	Conceptual Problem on Long Fin	0:12:58
19	Proper Length of Fin	0:05:49
20	Fin Performance	0:41:29
21	Example of Fin	0:08:46
22	Thermometric Well	0:11:35
23	Workbook Question 10 to 11	0:08:35
24	Workbook Question 12 to 14	0:10:26
25	Workbook Question 15 to 16	0:12:11
26	Workbook Question 17 to 18	0:14:32
Unsteady	y State Heat Conduction	
1	Introduction to Transient State Conduction	0:20:00
2	lumped Parameter Analysis	0:32:58
3	Heat Transfer Rate for Lumped Parameter Analysis	0:11:30
4	Electrical Analogy for Lumped Parameter	0:13:33
5	Time Constant	0:07:16
6	The Biot Number	0:24:08
7	Workbook Question 1 o 3	0:08:38
8	Workbook Question 4	0:06:51
9	Workbook Question 5 to 7	0:14:21
10	Workbook Question 8 to 10	0:26:47

1	Introduction to Convection	0:24:23
2	Classification of Convection	0:45:31
2	Nusselt Number	0.10.01
4	Bulk mean Temperature and Mean Film Temperature	0:12:04
5	Forced Convection and Free Convection	0:24:12
6	Thermal and Hydrodynamic Boundary Laver	0:34:34
7	Forced Convection (Flat Plate)	0:49:09
8	Revnolds and Colburn Analogy	0:18:09
9	Turbulent Flow Over Flat Plate	0:19:33
10	Laminar + Turbulent Flow Over Flat Plate	0:08:11
11	Momentum and Energy Equation	0:12:36
12	Concept of Fully Developed Flow	0:28:05
13	Heat Transfer Coefficient in a Pipe Flow	0:22:49
14	Temperature Variation in Case of Constant Wall Temperature & Heat Flux	0:23:48
15	Free Convection	0:16:04
16	Workbook Questions 1-9	0:28:06
17	Workbook Questions 10-15	0:16:10
18	Workbook Questions 16-20	0:42:43
19	Workbook Questions 21-23	0:11:07
20	Workbook Questions 24-28	0:47:52
21	Workbook Questions 29-30	0:16:10
Heat Exc	hanger	
1	Introduction to Heat Exchanger	0:18:40
2	Temperature Distribution Diagram	0:32:17
3	Analysis of Heat Exchanger(LMTD and AMTD)	0:43:05
4	LMTD approach	0:12:28
5	When and How to use LMTD	0:07:10
6	Effectiveness and NTU Approach	0:24:44
7	Effectiveness for Parallel and Counter Flow Heat Exchanger	0:24:06
8	Fouling Factor	0:07:54
9	Shell and Tube Type Heat Exchanger	0:17:59
10	Correction Factor	0:15:58
11	Example on LMTD and NTU Approach	0:21:50
12	Cross Flow Heat Exchanger	0:09:00
13	Workbook Questions 1 to 3	0:15:46
14	Workbook Question 4 to 7	0:17:56
15	Workbook Questions 8 to 12	0:16:21
16	Workbook Question 13 to 18	0:36:11
17	Workbook Question 19 TO 20	0:17:21
18	Workbook Question 21 TO 22	0:16:46

19	Workbook Question 23 to 25	0:35:40
20	Workbook Question 26 to 29	0:18:08
adiatio	n Heat Transfer	
1	Mechanism of Radiation Heat Transfer	0:35:55
2	Concepts of Radiation, Stefan-Boltzman Law and Shape Factor	0:29:55
3	Shape Factor (Part 1)	0:34:05
4	Shape Factor (Part 2-Cross string method)	0:23:22
5	Radiation Heat Exchange Between Black Surfaces	0:10:04
6	Planks Law, Wien's Displacement Law	0:42:46
7	Example on Planks law	0:06:28
8	Kirchoff's Law and Different Surfaces	0:24:53
9	Radiosity and Irradiation	0:07:22
10	Radiation Heat Exchange Between Nonblack Surfaces (part 1)	0:12:42
11	Radiation Heat Exchange Between Nonblack Surfaces (Part 2)	0:36:51
12	Artificial Black Surface	0:02:01
13	Radiation Shield	0:08:23
14	Intensity of Radiation	0:10:45
15	Workbook Question 1 to 9	0:40:59
16	Workbook Question 10 to 12	0:24:51
17	Workbook Question 13 to 17	0:21:44
18	Workbook Question 18 to 20	0:22:57
19	Workbook Question 21 to 22	0:13:44
20	Workbook Question 23 to 24	0:08:33
21	Workbook Question 25 to 27	0:19:55
22	Workbook Question 28 to 34	0:34:58

Theory of Machine

PEN-Drive / G-Drive Course & LIVE Classroom Program

Workbook

Mechanical Engineering

Sr.	Chapter	Pages
1.	Planer Mechanisms	1
2.	Displacement, Velocity & Acceleration	11
3.	Gear & Gear Trains	21
4.	Governor	34
5.	Flywheel	38
6.	Balancing	43
7.	Vibration	50
8.	Gyroscope	64
9.	Cams	66

Sr.	Lecture Name	Duration
0	How to Study PD-GD Course for Theory of Machines ?	0:08:33
Simple N	lechanisms	·
1	Kinematic Links	0:16:27
2	Types of Relative Motion and Kinematic Pair	0:41:57
3	Kinematic Chain	0:37:09
4	Degree of Freedom (Part 1)	0:28:31
5	Degree of Freedom (Part 2)	0:29:32
6	Degree of Freedom (Part 3)	0:29:17
7	Four Bar Mechanism	0:31:46
8	Question and Application of Four Bar Mechanisms	0:11:02
9	Single Slider Crank Mechanism	0:11:11
10	Application of Single Slider Crank Mechanisms (Quick Return Mechanisms)	0:36:26
11	Application of Single Slider Crank Mechanisms	0:09:17
12	Double Slider Crank Mechanisms	0:24:47
13	Transmission Angle	0:21:13
14	Mechanical Advantages	0:26:01
15	Offset Slider Crank Mechanisms	0:15:22
16	Equivalent Links	0:12:35
17	Key points	0:11:29
18	Workbook Questions (Part1)	0:21:09
19	Workbook Questions (Part2)	0:15:59
Velocity	and Acceleration Analysis of Simple Mechanisms	
1	Introduction to Instanseous center method	0:27:43
2	Question on I.C. Method	0:47:32
3	Relative velocity Approach	0:27:43
4	Acceleration Diagram	0:24:28
5	Coriolis Acceleration	0:16:47
6	Special concept on IC	0:11:55
7	Special concept on Velocity diagram	0:10:07
8	Concept of Swivel Trunnion and Rubbing Velocity	0:07:10
9	Workbook Questions (Part 1)	0:24:54
10	Workbook Questions (Part 2)	0:24:46
11	Workbook Questions (Part 3)	0:19:20
12	Workbook Questions (Part 4)	0:13:20
13	Workbook Questions (Part 5)	0:17:29
Gears an	d Gear Trains	
1	Introduction to gear and its classification	0:51:53

2	Gear Terminology	0:17:40
3	Law of Gearing	0:28:03
4	Introduction to Involute Profile	0:16:11
5	Analysis of involute profile	0:46:58
6	Question on Involute gear	0:33:33
7	Interference of involute profile	0:28:15
8	Minimum number of teeth in Involute gear	0:38:33
9	Question on minimum number of teeth	0:09:33
10	Effect of vibration on Involute profile	0:06:47
11	Cycloidal Profile	0:13:46
12	Introduction to gear train and its classification	0:54:22
13	Epicyclic gear train	0:16:49
14	Question on Epicylic Gear train	0:18:36
15	Planetary Gear train	0:11:53
16	Fixing torque	0:05:34
17	Workbook Questions (Part 1)	0:22:08
18	Workbook Questions (Part 2)	0:26:16
19	Workbook Questions (Part 3)	0:21:07
20	Workbook Questions (Part 4)	0:18:37
Governor		
1	Introduction to Governor	0:16:07
2	Watt, Porter and Proell Governor	0:43:04
3	Spring controlled governor (Hartnell governor)	0:29:17
4	Terms used in governor (Stability, Sensitiveness, Hunting and Isochronous governor)	0:40:51
5	Effort and Power of governor	0:18:34
6	Controlling force curve	0:36:36
7	Conventional Questions on Governor (Part 1)	0:33:30
8	Conventional Questions on Governor (Part 2)	0:28:05
9	Conventional Questions on Governor (Part 3)	0:20:47
10	Conventional Questions on Governor (Part 4)	0:29:55
11	Workbook Questions	0:21:08
Flywheel		
1	Kinematic Analysis of single slider crank mechanisms	0:32:16
2	Dynamic Analysis of Single Slider Crank Mechanisms	0:37:21
3	Question on Kinematic Analysis	0:08:55
4	Question on Dynamic Analysis	0:13:33
5	Fundamental Equation of Flywheel	0:33:16
6	Turning Moment Diagram of Single Cylinder Four Stroke Engine	0:05:49
7	Question on Flywheel	0:46:47
8	Requirement of Flywheel in Punching Press	0:18:47
9	Designing of Flywheel and Multicylinder Concepts	0:16:32

10	Difference between Flywheel and Governor	0:03:08
11	Workbook Questions (Part 1)	0:23:10
12	Workbook Questions (Part 2)	0:27:49
Balancin	g	
1	Introduction to balancing	0:13:36
2	Static balancing	0:37:29
3	Question on static balancing	0:39:44
4	Dynamic Balancing	0:30:35
5	Reciprocating Balancing	0:27:32
6	Effect of Partial Balancing in Locomotive	0:33:32
7	Question on Reciprocating Balancing	0:16:46
8	Secondary Balancing	0:11:19
9	Balancing of Multicylinder Engine	0:30:23
10	Balancing of In Line 4 Cylinder Engine	0:24:08
11	Balancing Of In Line 6 Cylinder Engine	0:17:17
12	Balancing of V Engine	0:41:47
13	Direct and Reverse Crank Method	0:28:55
14	Dynamic Equivalent System of Two Masses	0:10:01
15	Workbook Questions (Part 1)	0:21:20
16	Workbook Questions (Part 2)	0:20:41
Mechani	cal Vibrations	
1	Introduction to Mechanical Vibrations, Natural Frequency	0:36:44
2	Equivalent System and Cutting of Springs	0:20:34
3	Static Deflection Under Mass Method	0:22:33
4	Newton Second Law Method (Part 1)	0:21:54
5	Newton Second Law Method (Part 2)	0:33:31
6	Energy Method	0:12:18
7	Questions on Natural Frequency (Part 1)	0:28:27
8	Questions on Natural Frequency (Part 2)	0:28:19
9	Questions on Natural Frequency (Part 3)	0:20:40
10	Spring with Mass	0:10:04
11	Types of Vibration	0:19:03
12	Damped Vibration (Part 1)	0:40:53
13	Damped Vibration (Part 2)	0:44:32
14	Questions on Damped Vibrations	0:32:11
15	Forced Damped Vibrations	0:38:44
16	Phasor Diagram	0:12:38
17	Vibration Isolation	0:27:38
18	Whirling Speed of Shafts	0:09:09
19	Workbook Questions (Part 1)	0:18:07
20	Workbook Questions (Part 2)	0:27:25

21	Workbook Questions (Part 3)	0:36:19
22	Workbook Questions (Part 4)	0:35:50
Gyroscop	ic Device	
1	Introduction to Gyroscope	0:30:50
2	Gyroscopic Effect on Plane and Naval Ship	0:26:10
3	Stability of Automobile	0:36:16
4	Questions on Gyroscope	0:29:39
5	Workbook Questions	0:17:18
CAM and	Follower	
1	Introduction to CAM And Followers, Classifications	0:33:08
2	Terminology of Radial CAM	0:22:07
3	Follower Motions (Part 1)	0:24:17
4	Follower Motions (Part 2)	0:25:41
5	Workbook Questions	0:24:51

Basic Thermodynamics

Sr.	Chapter	Pages
1.	Introduction	1
2.	Energy Analysis	5
3.	First Law of Thermodynamics	9
4.	Second Law of Thermodynamics	17
5.	Entropy Concept	21
6.	Available Energy & Unavailable Energy	26
7.	Pure Substance	29
8.	Mixture of Gases	34
9.	TDS Relations	36

Sr.	Lecture Information	Duration
0	How to use PD-GD course for Thermodynamics ?	0:20:18
Introduct	ion	
1	Introduction	0:10:51
2	System, Surroundings and Boundary	0:24:02
3	Thermodynamic Properties, Process and Cycle	0:29:52
4	Thermodynamic Equilibrium	0:10:20
5	Types of Processes	0:26:08
6	Pressure	0:10:29
7	Basics of Ideal Gas	0:14:22
8	Basics of Pure Substance	0:10:38
9	Example	0:18:12
10	Workbook Q.3 - Q.8	0:21:06
Energy Ar	nalysis	·
1	Energy	0:19:33
2	Work Transfer Part 1	0:30:10
3	Work Transfer Part 2	0:49:38
4	Other Forms of Work	0:17:05
5	Different Processes on P-V Diagram	0:11:41
6	Workbook Q.1 - Q.7	0:21:38
First Law	of Thermodynamics	·
1	First Law of Thermodynamics	0:44:33
2	Enthalpy and Specific Heats	0:09:45
3	Internal Energy, Enthalpy and Specific Heats	0:10:37
4	Heat Transfer in Different Processes	0:15:25
5	Workbook Q.1 - Q.16	1:09:48
6	Control Volume System	1:06:36
7	Workbook Q.17- Q.30	1:19:35
8	Unsteady Flow	0:35:57
9	Workbook Q.31	0:07:42
10	Lenoir Cycle	0:08:19
11	Workbook Q.32 - Q.33	0:05:03
Second La	aw of Thermodynamics	
1	Introduction	0:13:58
2	Thermal Reservoirs	0:07:40
3	Heat Engine	0:13:50
4	Refrigerator and Heat Pump	0:20:04
5	Reversible and Irreversible Processes	0:30:32

6	Carnot Cycle and Carnot Principles	0:15:13
7	Thermodynamic Temperature Scale	0:06:43
8	Workbook Q.1 - Q.17	0:41:19
intropy	Concept	
1	Entropy	0:20:49
2	Clausius Inequality	0:46:18
3	Entropy Principle	0:12:32
4	Applications of Entropy Principle	0:17:36
5	Property Relations	0:07:29
6	Entropy Change	0:19:46
7	Different Processes on T-S diagram	0:06:53
8	Entropy Analysis of Control Volume System	0:13:55
9	Example 1	0:24:02
10	Example 2	0:15:27
11	Example 3	0:21:09
12	Example 4	0:13:17
13	Example 5	0:08:54
14	Workbook Q.1 - Q.4	0:32:14
15	Workbook Q.5 - Q.12	0:33:38
16	Workbook Q.13 - Q.20	0:23:53
17	Workbook Q.21 - Q.25	0:13:49
Available	e Energy	
1	Available Energy and Unavailable Energy	0:15:39
2	Decrease in Available Energy When Heat is Transferred Through a Finite	
Z	Temperature Difference	0:14:09
3	Available Energy of a Closed System and Steady Flow System	0:28:59
4	Irreversibility	0:11:36
5	Workbook Q.1 - Q.8	0:25:56
Pure Sub	ostance	
1	Pure Substance	0:04:41
2	Phase Diagrams	0:56:29
3	Subcooled and Superheated State	0:23:09
4	Dryness Fraction	0:17:51
5	Steam Table	0:33:15
6	Workbook Q.1 - Q.18	1:14:22
Mixture	of Gases	•
1	Ideal Gases	0:18:55
2	Real Gases	0:07:23
3	Mole Fraction and Mass Fraction	0:15:55
4	Ideal Gas Mixture	0:14:17
5	Workbook Q.1 - Q.6	0:19:46

Thermodynamic Relations		
1	Theorems	0:05:06
2	Maxwell Relations	0:08:46
3	Tds Equations	0:26:12
4	Energy Equation	0:16:42
5	Joule Thomson Expansion	0:39:59
6	Workbook Q.1 - Q.5	0:06:44

Application of Thermodynamics

Sr.	Chapter	Pages
1.	Vapour Power Cycle	39
2.	Gas Turbine Power Plant	52
3.	Internal Combustion Engine	58
4.	Refrigeration & Air Conditioning	66
5.	Psychrometric Process	71

Sr.	Lecture Information	Duration
Vapour F	ower Cycle	·
1	Introduction	0:09:02
2	Steam Power Plant and Rankine Cycle	0:37:46
3	Energy Analysis	0:48:35
4	Enthalpy Calculations	0:26:30
5	Example (Part 1)	0:51:30
6	Example (Part 2)	0:31:50
7	Comparison or Carnot and Rankine Cycle (Part 1)	0:21:02
8	Comparison or Carnot and Rankine Cycle (Part 2)	0:24:48
9	Superheating the Steam to Higher Pressure	0:21:21
10	Increasing the Boiler Pressure	0:09:04
11	Lowering the Condenser Pressure	0:11:56
12	Reheat Cycle	0:43:49
13	Ideal Regenerative Cycle (Part 1)	0:12:03
14	Ideal Regenerative Cycle (Part 2)	0:16:44
15	Regenerative Cycle with Single Open Feed Water Heater	0:16:24
16	Regenerative Cycle with Two Open Feed Water Heaters	0:19:30
17	Regenerative Cycle with Closed Feed Water Heaters	0:18:12
18	Effects of Regeneration	0:21:05
19	Characteristics of Ideal Working Fluid	0:19:33
20	Binary Vapour Cycle	0:14:56
21	Efficiencies in Steam Power Plant	0:12:41
22	Steam Turbine (Part 1)	0:58:20
23	Steam Turbine (Part 2)	0:14:02
24	Workbook Questions (Part 1)	0:38:28
25	Workbook Questions (Part 2)	0:43:24
26	Workbook Questions (Part 3)	0:38:30
27	Workbook Questions (Part 4)	0:44:11
Gas Turb	ine Power Plant	
1	Brayton Cycle	0:50:10
2	Effect of Pressure Ratio on Brayton Cycle	0:43:35
3	Brayton Cycle with Regeneration	0:14:10
4	Ideal Regenerative Cycle	0:17:04
5	Effect of Intercooling on Brayton Cycle	0:38:09
6	Effect of Reheating on Brayton Cycle	0:28:43
7	Compressors	0:04:12

8	Reciprocating Compressor	0:30:37
9	Isothermal Efficiency	0:04:22
10	Volumetric Efficiency	0:10:01
11	Multistage Compression	0:23:04
12	FAD	0:05:31
13	Workbook Questions (Part 1)	0:40:59
14	Workbook Questions (Part 2)	0:41:49
IC Engine	2	
1	Reciprocating Engines	0:15:31
2	Spark Ignition Engine	0:20:00
3	Air Standard Cycle	0:04:23
4	Otto Cycle	0:30:46
5	Mean Effective Pressure	0:07:10
6	Example 1	0:33:01
7	Example 2	0:25:25
8	Compression Ignition Engine	0:15:10
9	Diesel Cycle	0:17:49
10	Example 3	0:28:07
11	Example 4	0:49:54
12	Example 5	0:11:11
13	Dual Cycle	0:17:19
14	Example 6	0:39:59
15	Comparison of Otto, Diesel and Dual Cycles	0:28:22
16	Power Calculations of I C Engine	0:13:21
17	Volumetric Efficiency	0:10:26
18	Theoretical and Actual Pv Diagram	0:20:53
19	Testing of I C Engines	0:36:58
20	Example 7	0:25:39
21	Example 8	0:29:36
22	Stirling and Ericsson Cycles	0:08:28
23	Combustion	0:24:13
24	Workbook Questions (Part 1)	0:41:32
25	Workbook Questions (Part 2)	0:33:51
26	Workbook Questions (Part 3)	0:34:29
27	Workbook Questions (Part 4)	0:30:48
Refrigera	ation Cycles	
1	Introduction	0:28:16
2	Reversed Carnot Cycle	0:11:29
3	Unit of Refrigeration	0:03:24
4	Vapour Compression Refrigeration Cycle	0:35:52

5	Effect of Variation of Various Properties on the Performance of V C Cycle	0:37:43
6	Example 1	0:17:30
7	Example 2	0:18:40
8	Dry Versus Wet Compression	0:05:19
9	Liquid Vapour Regenerative heat Exchanger	0:29:24
10	Cascade Refrigeration System	0:24:31
11	Example 3	0:26:11
12	Vapour Absorption Refrigeration Cycle	0:26:12
13	COP of VARS	0:09:37
14	Example 4	0:07:24
15	Gas Refrigeration Cycle	0:19:06
16	Example 5	0:15:02
17	Refrigerants	0:34:38
18	Workbook Questions (Part 1)	0:37:05
19	Workbook Questions (Part 2)	0:30:56
Psychron	netry	
1	Introduction	0:23:38
2	Relative Humidity	0:08:35
3	Specific Humidity	0:17:01
4	Dry bulb, Wet Bulb and Dew Point Temperature	0:17:06
5	Degree of Saturation	0:04:41
6	Enthalpy of Moist Air	0:19:43
7	Example 1	0:15:01
8	Example 2	0:14:50
9	Example 3	0:11:06
10	Example 4	0:13:18
11	Psychrometric Chart	0:17:03
12	Psychrometric Processes	0:19:25
13	Example 5	0:18:20
14	Example 6	0:14:49
15	Adiabatic Mixing of Air Streams	0:06:24
16	Workbook Questions (Part 1)	0:37:45