Chapter 01 ➤ Introduction & Basics of CRE

Lecture 01
Introduction of Chemical Reaction Engineering 0:31:15
Lecture 02
Introduction about Chemical Engineering 0:31:09

Chapter 02 ➤ Basics of Reaction & Kinetics

Lecture 01
Types of Reaction 0:13:45
Lecture 02
Rate of Reaction 0:21:54
Lecture 03
Rate of Reaction For Homogeneous Reaction 0:13:12
Lecture 04
Factors Affecting The Rate of Reaction (Power Model) 0:10:10
Lecture 05
Rate of Reaction For Elementary & Non Elementary Reaction 0:14:13
Lecture 06
Molecularity & Order Of Reaction 0:12:26
Lecture 07
Mixed Order Of Reaction 0:19:07
Lecture 08
Relative Rate Of Reaction 0:13:04
Lecture 09
Workbook Question 5–7 0:22:36
Lecture 10
Rate Constant 0:27:06
Lecture 11
Temperature Dependency Theory 0:05:00
Lecture 12
Arrhenius Theory 0:44:58
Lecture 13
Workbook Questions 10–11 0:11:31
### Chapter 03  Introduction To Reactor Design

<table>
<thead>
<tr>
<th>Lecture 01</th>
<th>Reactor</th>
<th>0:08:04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 02</td>
<td>Batch Reactor</td>
<td>0:47:21</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Performance Equation of Ideal Batch Reactor</td>
<td>0:22:34</td>
</tr>
<tr>
<td>Lecture 04</td>
<td>Performance Equation For Ideal Batch Reacor For CVRS...</td>
<td>0:16:27</td>
</tr>
<tr>
<td>Lecture 05</td>
<td>Workbook Questions 1–3</td>
<td>0:50:15</td>
</tr>
<tr>
<td>Lecture 06</td>
<td>Ideal Continues Reactor, Space Time And Space Velocity</td>
<td>0:33:28</td>
</tr>
</tbody>
</table>
Chapter 07 ➤ Non Ideal Reactor

Lecture 01
Causes of Non Idealistic
0:13:00

Lecture 02
RTD Measurement
0:04:32

Lecture 03
Tracer
0:03:20

Lecture 04
Pulse Input Experiment & RTD Curve
0:38:17

Lecture 05
Mean Residence Time
0:04:48

Lecture 06
Workbook Questions 1–5
0:52:28

Lecture 07
Step Input Experiment
0:50:20

Lecture 08
Workbook Question 6
0:06:57

Lecture 09
RTD For MFR
0:25:05

Lecture 10
RTD For PFR
0:10:04

Lecture 11
RTD For MFR & PFR in Series
0:10:12

Lecture 12
RTD For PFR's in Series
0:03:53

Lecture 13
RTD For MFR & PFR in Parallel
0:05:29

Lecture 14
RTD For N-MFR's in Series
0:07:06

Lecture 15
Workbook Questions 7–10
0:26:49

Chapter 08 ➤ Effect of Temperature, Pressure and Inert on Reaction

Lecture 01
Effect of Temperature, Pressure & Inerts
0:26:06

Lecture 02
Workbook Questions 1–3
0:13:22

Lecture 03
Energy Balance for Chemical Reaction (Case 1)
0:18:27

Lecture 04
Workbook Question 4
0:11:18

Lecture 05
Energy Balance for Chemical Reaction (Case 2 & 3)
0:08:05

Lecture 06
Workbook Question 5
0:07:21

Chapter 09 ➤ Semibatch Reactor

Lecture 01
About Semibatch Reactor
0:16:29

Lecture 02
Performance Equation of Semibatch Reactor
0:20:46

Lecture 03
Workbook Question
0:29:31

Chapter 10 ➤ Recycle Reactor

Lecture 01
Importance of Recycling
0:30:43

Lecture 02
Performance Equation For Recycle Reactor
0:25:05

Lecture 03
Workbook Question 1
0:14:13
### Chapter 11  ➤ Reactor Modeling

<table>
<thead>
<tr>
<th>Lecture 01</th>
<th>Reactor Modelling, Variance, Dispersion No. &amp; Peclet No</th>
<th>0:24:05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 02</td>
<td>Summary For Tank In Series &amp; Dispersion Model</td>
<td>0:05:10</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Combination of Reactor According To Feed Condition</td>
<td>0:06:38</td>
</tr>
</tbody>
</table>

### Chapter 12  ➤ Heterogeneous Reaction System

<table>
<thead>
<tr>
<th>Lecture 01</th>
<th>Heterogeneous Reaction System &amp; Rate Controlling Step</th>
<th>0:46:46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 02</td>
<td>Workbook Questions 1–2</td>
<td>0:09:22</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Solid Catalytic Reaction System</td>
<td>0:34:48</td>
</tr>
<tr>
<td>Lecture 04</td>
<td>Thiele Modulus</td>
<td>0:11:30</td>
</tr>
<tr>
<td>Lecture 05</td>
<td>Effectiveness Factor</td>
<td>0:21:19</td>
</tr>
<tr>
<td>Lecture 06</td>
<td>Basic Terms and Surface Reaction Mechanism</td>
<td>0:15:29</td>
</tr>
</tbody>
</table>
## Chapter 01  Introduction

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Mass Transfer Introduction</td>
<td>0:26:16</td>
</tr>
</tbody>
</table>

## Chapter 02  Diffusion

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Diffusion Introduction</td>
<td>0:18:02</td>
</tr>
<tr>
<td>02</td>
<td>Diffusion In Liquids And Gases (Part 1)</td>
<td>1:14:21</td>
</tr>
<tr>
<td>03</td>
<td>Diffusion In Liquids And Gases (Part 2)</td>
<td>0:25:33</td>
</tr>
<tr>
<td>04</td>
<td>Diffusion In Solids</td>
<td>0:26:51</td>
</tr>
<tr>
<td>05</td>
<td>Flux And Mass Transfer Coefficient (Part 1)</td>
<td>0:33:39</td>
</tr>
<tr>
<td>06</td>
<td>Flux And Mass Transfer Coefficient (Part 2)</td>
<td>1:03:10</td>
</tr>
<tr>
<td>07</td>
<td>Mass Transfer Theories (Film Theory)</td>
<td>0:40:14</td>
</tr>
<tr>
<td>08</td>
<td>Mass Transfer Theories (Penetration Theory)</td>
<td>0:27:08</td>
</tr>
<tr>
<td>09</td>
<td>Mass Transfer Theories (Surface Renewal Theory)</td>
<td>0:16:46</td>
</tr>
<tr>
<td>10</td>
<td>Mass Transfer Theories (Two Film Theory) Part 1</td>
<td>0:38:28</td>
</tr>
<tr>
<td>11</td>
<td>Mass Transfer Theories (Two Film Theory) Part 2</td>
<td>0:54:25</td>
</tr>
<tr>
<td>12</td>
<td>Mass Transfer Theories (Questions of Mass Transfer Theories)</td>
<td>0:37:33</td>
</tr>
<tr>
<td>13</td>
<td>Mass Transfer Theories (Colburn Analogy)</td>
<td>0:05:21</td>
</tr>
</tbody>
</table>
### Chapter 03 ➤ Distillation

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction Of Distillation</td>
<td>1:16:07</td>
</tr>
<tr>
<td>02</td>
<td>Continuous Distillation</td>
<td>1:12:15</td>
</tr>
<tr>
<td>03</td>
<td>Mccabe Thiele Method (Part 1)</td>
<td>0:43:59</td>
</tr>
<tr>
<td>04</td>
<td>Mccabe Thiele Method (Part 2)</td>
<td>1:17:56</td>
</tr>
<tr>
<td>05</td>
<td>Mccabe Thiele Method (Part 3)</td>
<td>0:40:08</td>
</tr>
<tr>
<td>06</td>
<td>Role Of Pressure And Reflux Ratio</td>
<td>0:26:39</td>
</tr>
<tr>
<td>07</td>
<td>Total Reflux And Minimum Reflux Condition</td>
<td>1:06:25</td>
</tr>
<tr>
<td>08</td>
<td>Fenske's Equation</td>
<td>0:40:54</td>
</tr>
<tr>
<td>09</td>
<td>Efficiency</td>
<td>0:49:58</td>
</tr>
<tr>
<td>10</td>
<td>Flooding And Weeping</td>
<td>0:48:07</td>
</tr>
<tr>
<td>11</td>
<td>Flash Distillation</td>
<td>0:57:40</td>
</tr>
<tr>
<td>12</td>
<td>Steam Distillation</td>
<td>0:10:50</td>
</tr>
<tr>
<td>13</td>
<td>Batch Distillation</td>
<td>0:47:37</td>
</tr>
<tr>
<td>14</td>
<td>Extractive Distillation And Azeotropic Distillation</td>
<td>0:27:07</td>
</tr>
<tr>
<td>15</td>
<td>Vacuum Distillation</td>
<td>0:38:51</td>
</tr>
</tbody>
</table>

### Chapter 04 ➤ Extraction

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction Of Extraction</td>
<td>0:31:28</td>
</tr>
<tr>
<td>02</td>
<td>General Representation Of Extraction</td>
<td>1:04:55</td>
</tr>
<tr>
<td>03</td>
<td>Type Of Systems In Extraction</td>
<td>0:59:40</td>
</tr>
<tr>
<td>04</td>
<td>Cross Flow Cascade (Part 1)</td>
<td>1:14:44</td>
</tr>
<tr>
<td>05</td>
<td>Cross Flow Cascade (Part 2)</td>
<td>0:49:21</td>
</tr>
<tr>
<td>06</td>
<td>Mixing Rule And Missing Rule</td>
<td>0:21:57</td>
</tr>
<tr>
<td>07</td>
<td>Minimum And Maximum Solvent Required</td>
<td>0:34:48</td>
</tr>
<tr>
<td>08</td>
<td>Counter Current Flow Cascade</td>
<td>1:28:38</td>
</tr>
<tr>
<td>09</td>
<td>Selectivity Of Solvent</td>
<td>0:25:02</td>
</tr>
</tbody>
</table>

### Chapter 05 ➤ Absorption

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction Of Absorption</td>
<td>0:43:22</td>
</tr>
<tr>
<td>02</td>
<td>Minimum solvent required in absorption &amp; minimum gas…</td>
<td>0:56:25</td>
</tr>
<tr>
<td>03</td>
<td>Minimum solvent required in absorption &amp; minimum gas…</td>
<td>0:33:14</td>
</tr>
<tr>
<td>04</td>
<td>Kremser Equation (Part 1)</td>
<td>1:03:44</td>
</tr>
<tr>
<td>05</td>
<td>Kremser Equation (Part 2)</td>
<td>0:56:24</td>
</tr>
<tr>
<td>06</td>
<td>Packed Column</td>
<td>0:17:11</td>
</tr>
<tr>
<td>07</td>
<td>HTU &amp; NTU</td>
<td>0:36:33</td>
</tr>
<tr>
<td>Chapter 06</td>
<td>Drying</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Lecture 01</td>
<td>Introduction Of Drying</td>
<td>0:38:47</td>
</tr>
<tr>
<td>Lecture 02</td>
<td>Rate Of Drying (Part 1)</td>
<td>0:26:47</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Rate Of Drying (Part 2)</td>
<td>0:36:28</td>
</tr>
<tr>
<td>Lecture 04</td>
<td>Effect Of Variables On Rate Of Drying</td>
<td>0:09:33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 07</th>
<th>Absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 01</td>
<td>Introduction Of Adsorption</td>
</tr>
<tr>
<td>Lecture 02</td>
<td>Problems On Mass Transfer Mechanism Of Adsorption</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Adsorption Isotherms</td>
</tr>
<tr>
<td>Lecture 04</td>
<td>Physisorption Vs Chemisorption</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 08</th>
<th>Humidification &amp; Leaching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 01</td>
<td>Humidity</td>
</tr>
<tr>
<td>Lecture 02</td>
<td>Dry Bulb Temp, Wet Bulb Temp, Dew Point Temp</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Psychometric Chart</td>
</tr>
<tr>
<td>Lecture 04</td>
<td>Rate Of Drying In Terms Of Humidity</td>
</tr>
<tr>
<td>Lecture 05</td>
<td>Leaching</td>
</tr>
<tr>
<td>Lecture 06</td>
<td>Previous Year Questions</td>
</tr>
</tbody>
</table>
### Chapter 01 ► Solid Characteristics

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Properties &amp; Size Of Solid Particles</td>
<td>0:20:23</td>
</tr>
<tr>
<td>02</td>
<td>Shape Of The Particles (Concept Of Sphericity)</td>
<td>0:22:54</td>
</tr>
<tr>
<td>03</td>
<td>Workbook Question 1.1</td>
<td>0:10:19</td>
</tr>
<tr>
<td>04</td>
<td>Surface Shape Factor Concept &amp; Workbook Question 1.2</td>
<td>0:11:18</td>
</tr>
<tr>
<td>05</td>
<td>Volume Shape Factor</td>
<td>0:03:18</td>
</tr>
<tr>
<td>06</td>
<td>Workbook Question 1.3</td>
<td>0:06:41</td>
</tr>
<tr>
<td>07</td>
<td>Workbook Question 1.4</td>
<td>0:08:07</td>
</tr>
<tr>
<td>08</td>
<td>Particle Size Analysis</td>
<td>0:08:47</td>
</tr>
<tr>
<td>09</td>
<td>Average Size Analysis</td>
<td>0:20:39</td>
</tr>
<tr>
<td>10</td>
<td>Workbook Question 1.5 &amp; 1.6</td>
<td>0:11:37</td>
</tr>
<tr>
<td>11</td>
<td>Mixed Size Analysis</td>
<td>0:21:04</td>
</tr>
<tr>
<td>12</td>
<td>Workbook Question 1.7</td>
<td>0:12:06</td>
</tr>
</tbody>
</table>

### Chapter 02 ► Size Reduction

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction &amp; Purpose Of Size Reduction</td>
<td>0:13:21</td>
</tr>
<tr>
<td>02</td>
<td>Operating Methods (Forces) Of Size Reductions</td>
<td>0:16:29</td>
</tr>
<tr>
<td>03</td>
<td>Crushing Efficiency &amp; Mechanical Efficiency</td>
<td>0:13:30</td>
</tr>
</tbody>
</table>
### Lecture 01
Rittinger's Law

### Lecture 02
Kick's Law

### Lecture 03
Bond's Law & Concept Of Work Index

### Lecture 04
Workbook Question 2.1

### Lecture 05
Workbook Question 2.2

### Lecture 06
Workbook Question 2.3

### Lecture 07
Workbook Question 2.4

### Lecture 08
Workbook Question 2.5 & 2.6

### Lecture 09
Workbook Question 2.7, 2.8, 2.9, 2.10 & 2.11

### Lecture 10
Workbook Question 2.12, 2.13 & 2.14

### Lecture 11
Workbook Question 2.15 & 2.16

### Lecture 12
Size Reduction Equipments

### Lecture 13
Size Reduction Equipments Based On The Order Of Uses

### Lecture 14
Jaw Crushers & Gyratory Crushers

### Lecture 15
Roll Crushers

### Lecture 16
Ball Mill & Hammer Mill

### Lecture 17
Workbook Question 2.7, 2.8, 2.9, 2.10 & 2.11

### Lecture 18
Workbook Question 2.12, 2.13 & 2.14

### Lecture 19
Workbook Question 2.15 & 2.16

### Chapter 03 - Solidsolid Separation

### Lecture 01
Screening

### Lecture 02
Screen Efficiency

### Lecture 03
Tylor's Standard Screen Analysis

### Lecture 04
Screen Effectiveness

### Lecture 05
Screen Capacity

### Lecture 06
Screen Effectiveness Based On Coarse Particles & Fine...

### Lecture 07
Workbook Question 3.1, 3.2 & 3.3

### Lecture 08
Workbook Question 3.4

### Chapter 04 - Transportation Of Solids

### Lecture 01
Belt Conveyor & Pipe Conveyor

### Lecture 02
Screw Conveyor

### Lecture 03
Apron Conveyor & Bucket Elevator

### Lecture 04
Pneumatic Conveyor

### Chapter 05 - Sedimentation

### Lecture 01
Introduction Of Solid Liquid Separation

### Lecture 02
Calculation Of Terminal Settling Velocity (General Form)

### Lecture 03
Terminal Settling Velocity For Stoke's Law Regime…
### Chapter 06  Filtration

<table>
<thead>
<tr>
<th>Lecture 01</th>
<th>Introduction Of Filtration</th>
<th>0:10:56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 02</td>
<td>Types Of Filtration</td>
<td>0:26:59</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Principle Of Cake Filtration</td>
<td>0:21:27</td>
</tr>
<tr>
<td>Lecture 04</td>
<td>Calculation Of Pressure Drop For Constant Pressure Cake...</td>
<td>0:19:30</td>
</tr>
<tr>
<td>Lecture 05</td>
<td>Calculation Of Pressure Drop For Constant Pressure Cake...</td>
<td>0:18:19</td>
</tr>
<tr>
<td>Lecture 06</td>
<td>Workbook Question 6.1</td>
<td>0:08:54</td>
</tr>
<tr>
<td>Lecture 07</td>
<td>Workbook Question 6.2</td>
<td>0:07:19</td>
</tr>
<tr>
<td>Lecture 08</td>
<td>Workbook Question 6.3</td>
<td>0:02:17</td>
</tr>
<tr>
<td>Lecture 09</td>
<td>Workbook Question 6.4</td>
<td>0:03:50</td>
</tr>
<tr>
<td>Lecture 10</td>
<td>Workbook Question 6.5</td>
<td>0:05:53</td>
</tr>
</tbody>
</table>

### Chapter 07  Solidgas Separation

<table>
<thead>
<tr>
<th>Lecture 01</th>
<th>Introduction Of Solid Gas Separation</th>
<th>0:09:44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 02</td>
<td>Various Types Of Gravity Settling Chambers</td>
<td>0:24:35</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Venturi Scrubber</td>
<td>0:22:56</td>
</tr>
<tr>
<td>Lecture 04</td>
<td>Cyclone Separator</td>
<td>0:19:37</td>
</tr>
<tr>
<td>Lecture 05</td>
<td>Workbook Question 7.1 &amp; 7.2</td>
<td>0:06:59</td>
</tr>
<tr>
<td>Lecture 06</td>
<td>Workbook Question 7.3</td>
<td>0:07:27</td>
</tr>
<tr>
<td>Lecture 07</td>
<td>Workbook Question 7.4</td>
<td>0:09:33</td>
</tr>
</tbody>
</table>

### Chapter 08  Fluidization

<table>
<thead>
<tr>
<th>Lecture 01</th>
<th>Introduction &amp; Classification Of Packed Bed Columns</th>
<th>0:18:29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 02</td>
<td>Fluidized Bed &amp; Definition Of Minimum Fluidization Velocity</td>
<td>0:09:08</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Calculation Of Minimum Fluidization Velocity...</td>
<td>0:13:26</td>
</tr>
<tr>
<td>Lecture 04</td>
<td>Advantages Of Fluidized Bed Over Packed Bed</td>
<td>0:05:57</td>
</tr>
<tr>
<td>Lecture 05</td>
<td>Concept Of Bulk Density Within Fluidized Bed</td>
<td>0:08:32</td>
</tr>
</tbody>
</table>
### Chapter 09: Mixing

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 01</td>
<td>Introduction Of Mixing &amp; Agitation</td>
<td>0:16:02</td>
</tr>
<tr>
<td>Lecture 02</td>
<td>Purpose Of Mixing</td>
<td>0:15:41</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Mixing Equipments</td>
<td>0:13:46</td>
</tr>
<tr>
<td>Lecture 04</td>
<td>Applicability Of Froude Number</td>
<td>0:10:03</td>
</tr>
<tr>
<td>Lecture 05</td>
<td>Power Consumption For Mixing</td>
<td>0:14:13</td>
</tr>
<tr>
<td>Lecture 06</td>
<td>Workbook Question 9.1</td>
<td>0:03:16</td>
</tr>
<tr>
<td>Lecture 07</td>
<td>Workbook Question 9.2</td>
<td>0:02:09</td>
</tr>
<tr>
<td>Lecture 08</td>
<td>Workbook Question 9.3, 9.8 &amp; 9.9</td>
<td>0:11:15</td>
</tr>
<tr>
<td>Lecture 09</td>
<td>Workbook Question 9.4</td>
<td>0:06:28</td>
</tr>
<tr>
<td>Lecture 10</td>
<td>Workbook Question 9.5</td>
<td>0:10:07</td>
</tr>
<tr>
<td>Lecture 11</td>
<td>Workbook Question 9.6</td>
<td>0:05:46</td>
</tr>
<tr>
<td>Lecture 12</td>
<td>Workbook Question 9.7</td>
<td>0:06:28</td>
</tr>
</tbody>
</table>

### Syllabus Competition (Conclusion Lecture)

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 01</td>
<td>Syllabus Competition (Conclusion Lecture)</td>
<td>0:02:31</td>
</tr>
</tbody>
</table>
Chapter 01 ► Basic Concepts

Lecture 01  Defination Of Thermodynamics  0:21:56
Lecture 02  System Surrounding & Boundry  0:19:13
Lecture 03  Microscopic & Macroscopic Aproch of Thermodynamics  0:08:38
Lecture 04  Point Function, Path Function, Process, Cycle  0:36:24
Lecture 05  Pure Substance  0:27:44
Lecture 06  Property of a System  0:17:18
Lecture 07  Thermodynamic Equilibrium  0:11:35
Lecture 08  Gasses  0:16:10
Lecture 09  Workbook Question 1  0:02:21

Chapter 02 ► Zeroth Law of Thermodynamics

Lecture 01  Zeroth Law of Thermodynamics  0:25:27
Lecture 02  Thermodynamic Temperature Scales  0:24:17
Lecture 03  Problems  0:21:20
Lecture 04  Workbook Question 1  0:04:40
### Chapter 03  Energy Interaction

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Work Transfer</td>
<td>0:15:48</td>
</tr>
<tr>
<td>02</td>
<td>Generalised Equation For Work Transfer</td>
<td>0:22:51</td>
</tr>
<tr>
<td>03</td>
<td>Closed System Work Transfer Through Various Process</td>
<td>0:24:48</td>
</tr>
<tr>
<td>04</td>
<td>Open System Work Transfer Through Various Process</td>
<td>0:16:21</td>
</tr>
<tr>
<td>05</td>
<td>Ideal Gas Equations</td>
<td>0:16:21</td>
</tr>
<tr>
<td>06</td>
<td>Slope of Isothermal &amp; Adiabatic Curves on P-V Diagram</td>
<td>0:07:20</td>
</tr>
<tr>
<td>07</td>
<td>Representation of Various Process on P-V Diagram</td>
<td>0:24:19</td>
</tr>
<tr>
<td>08</td>
<td>Problems</td>
<td>0:46:27</td>
</tr>
<tr>
<td>09</td>
<td>Workbook Question 1</td>
<td>0:02:54</td>
</tr>
<tr>
<td>10</td>
<td>Workbook Question 2</td>
<td>0:02:31</td>
</tr>
<tr>
<td>11</td>
<td>Workbook Question 3</td>
<td>0:05:38</td>
</tr>
<tr>
<td>12</td>
<td>Workbook Question 4</td>
<td>0:09:48</td>
</tr>
</tbody>
</table>

### Chapter 04  First Law of Thermodynamics (Closed System)

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Heat</td>
<td>0:17:26</td>
</tr>
<tr>
<td>02</td>
<td>Internal Energy, Enthalpy</td>
<td>0:12:01</td>
</tr>
<tr>
<td>03</td>
<td>First Law of Thermodynamics</td>
<td>0:36:23</td>
</tr>
<tr>
<td>04</td>
<td>Heat Transfer through Various Process</td>
<td>0:43:04</td>
</tr>
<tr>
<td>05</td>
<td>PV for a Reversible Adiabatic Process</td>
<td>0:07:29</td>
</tr>
<tr>
<td>06</td>
<td>Free Expansion</td>
<td>0:11:59</td>
</tr>
<tr>
<td>07</td>
<td>Problems</td>
<td>0:08:02</td>
</tr>
<tr>
<td>08</td>
<td>Workbook Question 1</td>
<td>0:04:06</td>
</tr>
<tr>
<td>09</td>
<td>Workbook Question 2</td>
<td>0:02:58</td>
</tr>
<tr>
<td>10</td>
<td>Workbook Question 3</td>
<td>0:10:03</td>
</tr>
<tr>
<td>11</td>
<td>Workbook Question 4-5</td>
<td>0:04:50</td>
</tr>
<tr>
<td>12</td>
<td>Workbook Question 6-7</td>
<td>0:09:59</td>
</tr>
<tr>
<td>13</td>
<td>Workbook Question 8</td>
<td>0:05:07</td>
</tr>
<tr>
<td>14</td>
<td>Workbook Question 9-10</td>
<td>0:05:55</td>
</tr>
</tbody>
</table>

### Chapter 05  First Law of Thermodynamics (Open System)

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction to Steady Flow</td>
<td>0:14:29</td>
</tr>
<tr>
<td>02</td>
<td>Steady Flow Energy Equation</td>
<td>0:23:01</td>
</tr>
<tr>
<td>03</td>
<td>Applications Steady Flow Energy Equation</td>
<td>0:40:05</td>
</tr>
<tr>
<td>04</td>
<td>Unsteady State</td>
<td>0:19:06</td>
</tr>
<tr>
<td>05</td>
<td>Workbook Question 1-2</td>
<td>0:11:13</td>
</tr>
</tbody>
</table>
## Chapter 06 ➤ Second Law of Thermodynamics

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction</td>
<td>0:13:09</td>
</tr>
<tr>
<td>02</td>
<td>Heat Engine, Heat Pump, Refrigerator</td>
<td>0:30:05</td>
</tr>
<tr>
<td>03</td>
<td>Relationship between C.O.P of Heat Pump, Refrigerator, Efficiency</td>
<td>0:10:53</td>
</tr>
<tr>
<td>04</td>
<td>Carnot Cycle</td>
<td>0:20:39</td>
</tr>
<tr>
<td>05</td>
<td>Thermodynamic Temp, Scale</td>
<td>0:32:48</td>
</tr>
<tr>
<td>06</td>
<td>Clausius Equality</td>
<td>0:13:07</td>
</tr>
<tr>
<td>07</td>
<td>Workbook Question 1</td>
<td>0:03:01</td>
</tr>
<tr>
<td>08</td>
<td>Workbook Question 2–3</td>
<td>0:04:35</td>
</tr>
</tbody>
</table>

## Chapter 07 ➤ Entropy

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction</td>
<td>0:24:37</td>
</tr>
<tr>
<td>02</td>
<td>Change in Entropy of System (Reversible Process)</td>
<td>0:11:09</td>
</tr>
<tr>
<td>03</td>
<td>Change in Entropy of System (Irreversible Process)</td>
<td>0:14:47</td>
</tr>
<tr>
<td>04</td>
<td>Entropy Generation</td>
<td>0:10:15</td>
</tr>
<tr>
<td>05</td>
<td>Physical Meaning of Entropy</td>
<td>0:11:41</td>
</tr>
<tr>
<td>06</td>
<td>Change in Entropy of Universe</td>
<td>0:12:57</td>
</tr>
<tr>
<td>07</td>
<td>Combined 1st &amp; 2nd Law of Thermodynamics</td>
<td>0:37:41</td>
</tr>
<tr>
<td>08</td>
<td>T S Diagram</td>
<td>0:12:54</td>
</tr>
<tr>
<td>09</td>
<td>Change in Entropy of an Ideal Gas</td>
<td>0:19:39</td>
</tr>
<tr>
<td>10</td>
<td>Miscellaneous</td>
<td>0:25:09</td>
</tr>
<tr>
<td>11</td>
<td>2nd Law of Efficiency</td>
<td>0:18:40</td>
</tr>
<tr>
<td>12</td>
<td>Workbook Question 1–5</td>
<td>0:13:05</td>
</tr>
</tbody>
</table>

## Chapter 08 ➤ Properties Of Pure Substance

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Introduction</td>
<td>0:24:08</td>
</tr>
<tr>
<td>02</td>
<td>T v Diagram</td>
<td>0:23:44</td>
</tr>
<tr>
<td>03</td>
<td>P v Diagram</td>
<td>0:18:07</td>
</tr>
<tr>
<td>04</td>
<td>P T Diagram</td>
<td>0:17:41</td>
</tr>
<tr>
<td>05</td>
<td>Quality of the Mixture</td>
<td>0:22:49</td>
</tr>
<tr>
<td>06</td>
<td>Various Regions</td>
<td>0:13:01</td>
</tr>
<tr>
<td>07</td>
<td>Enthalpy at Various Points</td>
<td>0:17:11</td>
</tr>
<tr>
<td>08</td>
<td>Entropy at Various Points</td>
<td>0:18:54</td>
</tr>
<tr>
<td>09</td>
<td>Clausius–Clapeyron Equation</td>
<td>0:23:40</td>
</tr>
<tr>
<td>10</td>
<td>Workbook Question 1</td>
<td>0:02:27</td>
</tr>
</tbody>
</table>
### Chapter 09  Mixture of Gasses

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Mixture of Gasses</td>
<td>0:15:23</td>
</tr>
</tbody>
</table>

### Chapter 10  T.ds Relations

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Theorems</td>
<td>0:10:28</td>
</tr>
<tr>
<td>02</td>
<td>Maxwell Equations</td>
<td>0:21:20</td>
</tr>
<tr>
<td>03</td>
<td>T.ds Equations</td>
<td>0:16:31</td>
</tr>
<tr>
<td>04</td>
<td>Coff. of Vol Expansion &amp; Isothermal Compressibility</td>
<td>0:22:24</td>
</tr>
<tr>
<td>05</td>
<td>Joule–Thomson Experiment</td>
<td>0:20:11</td>
</tr>
<tr>
<td>06</td>
<td>Workbook Question 1–3</td>
<td>0:07:41</td>
</tr>
</tbody>
</table>
### Unit 01

**Lecture 01**
- Introduction Of Solution Thermodynamics: 0:14:10

**Lecture 02**
- Workbook Question 1.1: 0:05:31

**Lecture 03**
- Workbook Question 1.2: 0:08:07

**Lecture 04**
- Partial Molar Properties: 0:11:40

**Lecture 05**
- Workbook Question 1.3: 0:07:42

**Lecture 06**
- Workbook Question 1.4: 0:06:06

**Lecture 07**
- Workbook Question 1.5: 0:07:42

**Lecture 08**
- Summarization Of Partial Molar Properties: 0:22:59

### Unit 02

**Lecture 01**
- Ideal Gas Mixture Model: 0:27:46

**Lecture 02**
- Properties Change Of Mixing: 0:24:23

**Lecture 03**
- Summarization Of Ideal Gas Mixture Model: 0:21:36

**Lecture 04**
- Workbook Question 2.1: 0:08:32

**Lecture 05**
- Workbook Question 2.2: 0:09:31

**Lecture 06**
- Workbook Question 2.3: 0:06:22

**Lecture 07**
- Workbook Question 2.4: 0:06:40
### Unit 03

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Excess Property And Residual Properties</td>
<td>0:17:10</td>
</tr>
<tr>
<td>02</td>
<td>Workbook Question 3.1</td>
<td>0:10:04</td>
</tr>
<tr>
<td>03</td>
<td>Fugacity And Fugacity Coefficient</td>
<td>0:26:59</td>
</tr>
<tr>
<td>04</td>
<td>Workbook Question 3.2</td>
<td>0:09:43</td>
</tr>
<tr>
<td>05</td>
<td>Workbook Question 3.3</td>
<td>0:13:45</td>
</tr>
<tr>
<td>06</td>
<td>Workbook Question 3.4</td>
<td>0:06:55</td>
</tr>
<tr>
<td>07</td>
<td>Fugacity Of Compressed Liquid</td>
<td>0:14:09</td>
</tr>
<tr>
<td>08</td>
<td>Workbook Question 3.5</td>
<td>0:08:03</td>
</tr>
<tr>
<td>09</td>
<td>Workbook Question 3.6</td>
<td>0:10:50</td>
</tr>
<tr>
<td>10</td>
<td>Workbook Question 3.7</td>
<td>0:12:10</td>
</tr>
<tr>
<td>11</td>
<td>Activity And Activity Coefficient</td>
<td>0:13:18</td>
</tr>
<tr>
<td>12</td>
<td>Workbook Question 3.8</td>
<td>0:11:50</td>
</tr>
<tr>
<td>13</td>
<td>Workbook Question 3.9</td>
<td>0:05:09</td>
</tr>
<tr>
<td>14</td>
<td>Modified Raoult's Law</td>
<td>0:23:58</td>
</tr>
<tr>
<td>15</td>
<td>Workbook Question 3.10</td>
<td>0:15:01</td>
</tr>
<tr>
<td>16</td>
<td>Workbook Question 3.11</td>
<td>0:11:06</td>
</tr>
<tr>
<td>17</td>
<td>Workbook Question 3.12</td>
<td>0:16:09</td>
</tr>
<tr>
<td>18</td>
<td>Workbook Question 3.13</td>
<td>0:10:29</td>
</tr>
</tbody>
</table>

### Unit 04

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Gibbs Free Energy As A Generating Function</td>
<td>0:12:25</td>
</tr>
<tr>
<td>02</td>
<td>Workbook Question 4.1</td>
<td>0:09:11</td>
</tr>
<tr>
<td>03</td>
<td>Workbook Question 4.2</td>
<td>0:05:38</td>
</tr>
<tr>
<td>04</td>
<td>Vapor Liquid Equilibrium &amp; Lewis–Randall Rule</td>
<td>0:11:10</td>
</tr>
<tr>
<td>05</td>
<td>Workbook Question 4.3</td>
<td>0:08:56</td>
</tr>
<tr>
<td>06</td>
<td>Workbook Question 4.4</td>
<td>0:16:59</td>
</tr>
<tr>
<td>07</td>
<td>Chemical Reaction Equilibrium</td>
<td>0:34:25</td>
</tr>
<tr>
<td>08</td>
<td>Workbook Question 4.5</td>
<td>0:14:16</td>
</tr>
<tr>
<td>09</td>
<td>Workbook Question 4.6</td>
<td>0:07:52</td>
</tr>
<tr>
<td>10</td>
<td>Workbook Question 4.7</td>
<td>0:21:13</td>
</tr>
<tr>
<td>11</td>
<td>Workbook Question 4.8</td>
<td>0:19:03</td>
</tr>
<tr>
<td>12</td>
<td>Workbook Question 4.9</td>
<td>0:08:32</td>
</tr>
<tr>
<td>13</td>
<td>Summarization Of Solution Thermodynamics</td>
<td>0:32:08</td>
</tr>
</tbody>
</table>
# Lecture Information

## Chapter 01 ▶ Number System

<table>
<thead>
<tr>
<th>Lecture 01</th>
<th>Number of Zeros at the end</th>
<th>00:45:09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 02</td>
<td>Unit Digit Value</td>
<td>00:47:50</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Last Two Digits</td>
<td>00:30:17</td>
</tr>
<tr>
<td>Lecture 04</td>
<td>Concept of Remainders</td>
<td>00:40:09</td>
</tr>
<tr>
<td>Lecture 05</td>
<td>Factorisation</td>
<td>00:30:07</td>
</tr>
<tr>
<td>Lecture 06</td>
<td>Divisibility</td>
<td>00:43:07</td>
</tr>
<tr>
<td>Lecture 07</td>
<td>Important Note</td>
<td>00:23:09</td>
</tr>
</tbody>
</table>

## Chapter 02 ▶ PnC & Probability

<table>
<thead>
<tr>
<th>Lecture 01</th>
<th>Addition, Multiplication &amp; Filling</th>
<th>01:16:42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 02</td>
<td>Basics of PnC</td>
<td>00:24:20</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Letters–Word Arrangement</td>
<td>00:32:51</td>
</tr>
<tr>
<td>Lecture 04</td>
<td>Team Formation</td>
<td>00:25:59</td>
</tr>
<tr>
<td>Lecture 05</td>
<td>Question Paperwala Question</td>
<td>00:13:37</td>
</tr>
<tr>
<td>Lecture 06</td>
<td>Number Sum</td>
<td>00:12:14</td>
</tr>
<tr>
<td>Lecture 07</td>
<td>Linear and Circular Arrangements</td>
<td>00:10:44</td>
</tr>
<tr>
<td>Lecture 08</td>
<td>Straight Lines, Triangles, Chess Board, Handshake &amp; Gift...</td>
<td>00:28:09</td>
</tr>
<tr>
<td>Lecture 09</td>
<td>Dictionary Word</td>
<td>00:11:27</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Lecture 10</td>
<td>Important Concepts PnC</td>
<td>00:21:53</td>
</tr>
<tr>
<td>Lecture 11</td>
<td>Concept Builder 1 (Probability)</td>
<td>02:01:46</td>
</tr>
<tr>
<td>Lecture 12</td>
<td>Concept Builder 2 (Probability)</td>
<td>01:17:15</td>
</tr>
<tr>
<td>Lecture 13</td>
<td>Challenge Question (Probability)</td>
<td>00:51:46</td>
</tr>
</tbody>
</table>

**Chapter 03 ➤ TSD & Work and Time**

<table>
<thead>
<tr>
<th>Lecture 01</th>
<th>Average Speed</th>
<th>00:27:29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 02</td>
<td>Time Difference</td>
<td>00:42:29</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Relative Speed</td>
<td>00:52:49</td>
</tr>
<tr>
<td>Lecture 04</td>
<td>Challenge Questions</td>
<td>01:05:54</td>
</tr>
<tr>
<td>Lecture 05</td>
<td>Boats &amp; Streams</td>
<td>00:18:56</td>
</tr>
<tr>
<td>Lecture 06</td>
<td>Linear Races</td>
<td>00:21:37</td>
</tr>
<tr>
<td>Lecture 07</td>
<td>Challenge Questions</td>
<td>00:12:01</td>
</tr>
<tr>
<td>Lecture 08</td>
<td>Circular Races &amp; HCF-LCM</td>
<td>01:35:08</td>
</tr>
<tr>
<td>Lecture 09</td>
<td>Work &amp; Time</td>
<td>00:14:55</td>
</tr>
<tr>
<td>Lecture 10</td>
<td>Understanding Workdone</td>
<td>01:16:39</td>
</tr>
<tr>
<td>Lecture 11</td>
<td>Distribution of Wages</td>
<td>00:09:14</td>
</tr>
<tr>
<td>Lecture 12</td>
<td>Pipes &amp; Cisterns</td>
<td>00:32:16</td>
</tr>
<tr>
<td>Lecture 13</td>
<td>W=DMTE</td>
<td>00:38:58</td>
</tr>
</tbody>
</table>

**Chapter 04 ➤ Percentage & Its Applications**

<table>
<thead>
<tr>
<th>Lecture 01</th>
<th>Percentage : DI (Pie Chart)</th>
<th>01:38:34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 02</td>
<td>Percentage : DI (Table &amp; Line Graph)</td>
<td>00:49:11</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Percentage Basic</td>
<td>01:07:11</td>
</tr>
<tr>
<td>Lecture 04</td>
<td>Profit &amp; Loss</td>
<td>00:33:26</td>
</tr>
<tr>
<td>Lecture 05</td>
<td>Mixture Alligation</td>
<td>01:20:55</td>
</tr>
<tr>
<td>Lecture 06</td>
<td>SICI &amp; Some more Graphs</td>
<td>01:38:16</td>
</tr>
</tbody>
</table>

**Chapter 05 ➤ Miscellaneous**

<table>
<thead>
<tr>
<th>Lecture 01</th>
<th>Logarithms</th>
<th>01:20:25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 02</td>
<td>Odd One Out, Coding, Decoding, Missing Letter &amp; Blood ...</td>
<td>00:31:29</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Simplification, Some More Graphs &amp; Reasoning</td>
<td>03:33:52</td>
</tr>
</tbody>
</table>

**Chapter 06 ➤ Verbal**

<table>
<thead>
<tr>
<th>Lecture 01</th>
<th>Logical Connective</th>
<th>01:05:55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 02</td>
<td>Sylllogism</td>
<td>01:33:15</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Verbal Reasoning (Critical Reasoning)</td>
<td>01:43:06</td>
</tr>
</tbody>
</table>
## Linear Algebra

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>How to use PD-GD Course for Engineering Mathematics?</td>
<td>00:28:44</td>
</tr>
<tr>
<td>01</td>
<td>Basics of Linear Algebra</td>
<td>00:48:39</td>
</tr>
<tr>
<td>02</td>
<td>Basic of Operation of Matrix</td>
<td>01:21:13</td>
</tr>
<tr>
<td>03</td>
<td>Types of Square Matrix</td>
<td>00:49:25</td>
</tr>
<tr>
<td>04</td>
<td>Eigen Value &amp; Caley Hamilton Theorem</td>
<td>01:02:23</td>
</tr>
<tr>
<td>05</td>
<td>Eigen Vector &amp; Concept of Diagonalization</td>
<td>01:14:16</td>
</tr>
<tr>
<td>06</td>
<td>Rank of Matrix</td>
<td>01:11:06</td>
</tr>
<tr>
<td>07</td>
<td>Solution of Linear Equation</td>
<td>00:36:36</td>
</tr>
<tr>
<td>08</td>
<td>Basis of Vectors</td>
<td>00:25:23</td>
</tr>
</tbody>
</table>

## Differential Equation

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Basic of Differential Equation</td>
<td>00:27:01</td>
</tr>
<tr>
<td>02</td>
<td>Solution of Ordinary Differential Equation</td>
<td>00:13:18</td>
</tr>
<tr>
<td>03</td>
<td>Solution of Homogeneous Differential Equation</td>
<td>00:37:40</td>
</tr>
<tr>
<td>04</td>
<td>Solution of Non-Homogeneous Differential Equation</td>
<td>00:56:46</td>
</tr>
<tr>
<td>05</td>
<td>Cauchy Linear Differential Equation</td>
<td>00:17:54</td>
</tr>
<tr>
<td>06</td>
<td>First Order First Degree Differential Equation</td>
<td>00:44:55</td>
</tr>
</tbody>
</table>
## Chapter 03  ➤ Integral Calculus

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Basic of Integral Calculus</td>
<td>00:37:55</td>
</tr>
<tr>
<td>02</td>
<td>Special Function (Gamma &amp; Beta)</td>
<td>00:53:06</td>
</tr>
<tr>
<td>03</td>
<td>Change of Order (Double Integral)</td>
<td>00:50:14</td>
</tr>
<tr>
<td>04</td>
<td>Application of Integral</td>
<td>01:11:10</td>
</tr>
<tr>
<td>05</td>
<td>Zero level concept of integration</td>
<td>00:51:50</td>
</tr>
<tr>
<td>06</td>
<td>Basic of proper and improper integrals</td>
<td>00:28:29</td>
</tr>
</tbody>
</table>

## Chapter 04  ➤ Vector Calculus

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Basic of Vector</td>
<td>00:46:16</td>
</tr>
<tr>
<td>02</td>
<td>Del Operator</td>
<td>00:08:03</td>
</tr>
<tr>
<td>03</td>
<td>Gradient, Divergence, Curl &amp; Directional Derivative</td>
<td>00:49:13</td>
</tr>
<tr>
<td>04</td>
<td>Problem Based on G, D &amp; C</td>
<td>00:37:04</td>
</tr>
<tr>
<td>05</td>
<td>Vector Integral Calculus</td>
<td>00:13:07</td>
</tr>
<tr>
<td>06</td>
<td>Stoke &amp; Gauss Theorem</td>
<td>00:24:54</td>
</tr>
<tr>
<td>07</td>
<td>Problem Based on Stoke &amp; Gauss Theorem</td>
<td>00:49:00</td>
</tr>
<tr>
<td>08</td>
<td>Miscellaneous</td>
<td>00:19:02</td>
</tr>
</tbody>
</table>

## Chapter 05  ➤ Maxima Minima

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Concept of Maxima &amp; Minima (One Independent Variable)</td>
<td>00:18:33</td>
</tr>
<tr>
<td>02</td>
<td>Analysis of Maxima &amp; Minima</td>
<td>00:17:18</td>
</tr>
<tr>
<td>03</td>
<td>Questions on Maxima &amp; Minima</td>
<td>00:14:01</td>
</tr>
<tr>
<td>04</td>
<td>Concept of Maxima &amp; Minima (Two Independent Variable)</td>
<td>00:07:53</td>
</tr>
<tr>
<td>05</td>
<td>Miscellaneous Questions on Maxima &amp; Minima</td>
<td>00:30:06</td>
</tr>
</tbody>
</table>

## Chapter 06  ➤ Mean Value Theorem

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Basic of Functions &amp; Limits</td>
<td>00:15:12</td>
</tr>
<tr>
<td>02</td>
<td>Continuity &amp; Differentiability</td>
<td>00:54:21</td>
</tr>
<tr>
<td>03</td>
<td>Rolle &amp; Lagrange's MVT</td>
<td>00:28:30</td>
</tr>
</tbody>
</table>

## Chapter 07  ➤ Complex Variable

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Basic of Complex Variable</td>
<td>00:29:32</td>
</tr>
<tr>
<td>02</td>
<td>Concept of Analytic Function</td>
<td>00:53:35</td>
</tr>
<tr>
<td>03</td>
<td>Complex Integral</td>
<td>00:12:47</td>
</tr>
<tr>
<td>04</td>
<td>Residue Theorem &amp; Cauchy Theorem</td>
<td>01:07:02</td>
</tr>
<tr>
<td>Chapter 08</td>
<td>Limits &amp; Series Expansion</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>Lecture 01</td>
<td>Limits</td>
<td>00:33:36</td>
</tr>
<tr>
<td>Lecture 02</td>
<td>Series Expansion</td>
<td>00:40:43</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Fourier Series</td>
<td>00:32:21</td>
</tr>
<tr>
<td>Lecture 04</td>
<td>Laplace Transform</td>
<td>00:48:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 09</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 01</td>
<td>Sample Space</td>
</tr>
<tr>
<td>Lecture 02</td>
<td>Events</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Basic Of Probability</td>
</tr>
<tr>
<td>Lecture 04</td>
<td>Probability of Distribution (Binomial)</td>
</tr>
<tr>
<td>Lecture 05</td>
<td>Poison Distribution</td>
</tr>
<tr>
<td>Lecture 06</td>
<td>Normal Distribution</td>
</tr>
<tr>
<td>Lecture 07</td>
<td>Random Variable</td>
</tr>
<tr>
<td>Lecture 08</td>
<td>Central Tendency (Mean, median, mode)</td>
</tr>
<tr>
<td>Lecture 09</td>
<td>Standard deviation &amp; Coefficient of Variance</td>
</tr>
<tr>
<td>Lecture 10</td>
<td>Questions Based on Central Tendency</td>
</tr>
<tr>
<td>Lecture 11</td>
<td>Basics of Corelation &amp; Regression Analysis</td>
</tr>
<tr>
<td>Lecture 12</td>
<td>Some more on probability (Bayes theorem) (Part-1)</td>
</tr>
<tr>
<td>Lecture 13</td>
<td>Some more on probability (Part-2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Numerical Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 01</td>
<td>Methods to solve Non-Linear Algebric Equation</td>
</tr>
<tr>
<td>Lecture 02</td>
<td>Question of Non-Linear Algebric Equation</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Methods to Solve Differential Equation</td>
</tr>
<tr>
<td>Lecture 04</td>
<td>Question of Differential Equation</td>
</tr>
<tr>
<td>Lecture 05</td>
<td>Method to Solve Numerical Integral</td>
</tr>
<tr>
<td>Lecture 06</td>
<td>Questions of Numerical Integrals</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preparation Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 01</td>
</tr>
</tbody>
</table>
1. Fluid Mechanics
2. Process Dynamics & Control
3. Chemical Technology
4. Heat Transfer Operations
5. Plant Design & Economics
6. Process Calculation