PAGE GATE 2021 [Forenoon Session]
 1

Technical Section

Question 1

Signals \& Systems (2M)
The causal signal with z-transform $z^{2}(z-a)^{-2}$ is
($u[n]$ is the unit step signal)
(A) $a^{2 n} u[n]$
(B) $(n+1) a^{n} u[n]$
(C) $n^{-1} a^{n} u[n]$
(D) $n^{2} a^{n} u[n]$

Ans. B
Sol. Given : Z-transform of a causal signal is,

$$
\begin{equation*}
X(z)=z^{2}(z-a)^{-2}=\frac{z^{2}}{(z-a)^{2}} \tag{i}
\end{equation*}
$$

The Z transform pair for $a^{n} u[n]$ signal is given by

$$
a^{n} u[n] \longleftrightarrow \frac{z}{z-a}
$$

Using differentiation in z -domain property,

$$
\begin{aligned}
& n a^{n} u[n] \longleftrightarrow-z \frac{d}{d z}\left(\frac{z}{z-a}\right) \Rightarrow-z\left[\frac{(z-a) \times 1-z \times 1}{(z-a)^{2}}\right] \\
& n a^{n} u[n] \longleftrightarrow \frac{a z}{(z-a)^{2}}
\end{aligned}
$$

Using time shifting property,

$$
\begin{align*}
& (n+1) a^{n+1} u[n+1] \longleftrightarrow \frac{a z}{(z-a)^{2}} z \\
& (n+1) a^{n} u[n+1] \longleftrightarrow \frac{z^{2}}{(z-a)^{2}} \tag{ii}
\end{align*}
$$

Comparing equations (i) and (ii), required inverse of given transform is,

$$
x[n]=(n+1) a^{n} u[n+1]
$$

Sequence $u[n+1]$ exist for $-1 \leq n<\infty$, but the factor $(n+1)$ is zero for $n=-1$, so $x[n]$ may be expressed as a causal sequence.

$$
x[n]=(n+1) a^{n} u[n]
$$

Hence, the correct option is (B).

Question 2

For the closed-loop system shown, the transfer function $\frac{E(s)}{R(s)}$ is

(A) $\frac{G}{1+G H}$
(B) $\frac{G H}{1+G H}$
(C) $\frac{1}{1+G H}$
(D) $\frac{1}{1+G}$

Sol.

Closed loop transfer function for negative feedback system is given by,

$$
\begin{equation*}
\frac{C(s)}{R(s)}=\frac{G}{1+G H} \tag{i}
\end{equation*}
$$

From the figure, $E(s)$ is input to G and $C(s)$ is output of G

$$
\begin{align*}
& \frac{C(s)}{E(s)}=G \\
& C(s)=G E(s) \tag{ii}
\end{align*}
$$

From equation (i) and (ii),

$$
\begin{aligned}
& \frac{G E(s)}{R(s)}=\frac{G}{1+G H} \\
& \frac{E(s)}{R(s)}=\frac{1}{1+G H}
\end{aligned}
$$

Hence, the correct option is (C).

Question 3

Control System (2M)

The input impedance, $Z_{i n}(s)$, for the network shown is

(A) $\frac{23 s^{2}+46 s+20}{4 s+5}$
(B) $6 s+4$
(C) $7 s+4$
(D) $\frac{25 s^{2}+46 s+20}{4 s+5}$

Ans. A
Sol. Method 1 :

Applying KVL in the loop 1,

$$
\begin{align*}
& V_{1}=4 I_{1}+6 s I_{1}+s I_{2} \\
& V_{1}=(4+6 s) I_{1}+s I_{2} \tag{i}
\end{align*}
$$

Applying KVL in the loop 2,

PAGE GATE 2021 [Forenoon Session]
 3

$$
\begin{align*}
& 5 I_{2}+4 s I_{2}+s I_{1}=0 \\
& I_{2}=-\frac{s I_{1}}{4 s+5} \tag{ii}
\end{align*}
$$

So,

$$
\begin{aligned}
& V_{1}=(4+6 s) I_{1}+s\left[-\frac{s I_{1}}{4 s+5}\right] \\
& \frac{V_{1}}{I_{1}}=4+6 s-\frac{s^{2}}{4 s+5} \\
& \frac{V_{1}}{I_{1}}=\frac{24 s^{2}+16 s+20+30 s-s^{2}}{4 s+5} \\
& \frac{V_{1}}{I_{1}}=Z_{\text {in }}(s)=\frac{23 s^{2}+46 s+20}{4 s+5}
\end{aligned}
$$

Hence, the correct option is (A).

Method 2:

By taking the effect of dots into account the modified circuit diagram is as shown below,

$$
Z_{i n}=(4+5 s)+\frac{(5+3 s) s}{4 s+5}=\frac{23 s^{2}+46 s+20}{4 s+5}
$$

Hence, the correct option is (AB).

Question 4

Power System (1M)
Two single-core power cables have total conductor resistances of 0.7Ω and 0.5Ω respectively and their insulation resistances (between core and sheath) are $600 \mathrm{M} \Omega$ and $900 \mathrm{M} \Omega$ respectively. When the two cables are joined in series, the ratio of insulation resistance to conductor resistance is \qquad $\times 10^{6}$
Ans. 300
Sol. Note : When two cables are connected in series, conductor resistances will be in series and insulation resistances will be in parallel.

$$
\begin{aligned}
& R_{\text {conductor }}=0.7+0.5=1.2 \Omega \\
& R_{\text {insulation }}=\frac{600 \times 900}{600+900}=360 \mathrm{M} \Omega \\
& \frac{R_{\text {insulation }}}{R_{\text {conductor }}}=\frac{360 \mathrm{M} \Omega}{1.2 \Omega}=300 \times 10^{6}
\end{aligned}
$$

Hence, the correct answer is 300 .

Question 5

Electrical Machine (2M)
In a single phase transformer, the total iron loss is 2500 W at nominal voltage of 440 V and frequency 50 Hz . The total iron loss is 850 W at 220 V and 25 Hz . Then, at nominal voltage and frequency, the hysteresis loss and eddy current loss respectively are
(A) 1600 W and 900 W
(B) 900 W and 1600 W
(C) 250 W and 600 W
(D) 600 W and 250 W

Ans. B
Sol. Given : Single phase transformer
Case 1: $V_{1}=440 \mathrm{~V}, f_{1}=50 \mathrm{~Hz}$
Total iron loss, $P_{1}=2500 \mathrm{~W}$

$$
\frac{V}{f}=\frac{V_{1}}{f_{1}}=\frac{440}{50}=8.8
$$

Case 2: $V_{2}=220 \mathrm{~V}, f_{2}=25 \mathrm{~Hz}$

Total iron loss, $P_{2}=850 \mathrm{~W}$

$$
\frac{V}{f}=\frac{V_{2}}{f_{2}}=\frac{220}{25}=8.8
$$

Here, $\frac{V}{f}=$ constant
Hysteresis losses is given by

$$
P_{h}=K_{h}\left(B_{m}\right)^{x} f v
$$

$K_{h}=$ Hysteresis constant
$x=$ Steinmetz constant
$B_{m}=$ Maximum flux density

PAGE
 GATE 2021 [Forenoon Session]
 5

$f=$ Supply frequency
$v=$ volume of the core
Eddy current loss is given by
$P_{e}=K_{e}\left(B_{m}\right)^{2} f^{2} v$
$K_{e}=$ Eddy current constant
$x=$ Steinmetz constant
$B_{m}=$ Maximum flux density
$f=$ Supply frequency
$v=$ volume of the core
Core loss is defined as,

$$
P_{i}=P_{h}+P_{e}
$$

Hysteresis loss, $P_{h}=K_{h} B_{m}^{1.6} f$
Eddy current loss, $P_{e}=K_{e} B_{m}^{2} f^{2}$

$$
\begin{aligned}
& P_{e}=K_{e} f^{2} \\
& P_{h}=K_{h} f \quad \text { and at } V_{2}=220 \mathrm{~V},
\end{aligned}
$$

$f_{2}=25 \mathrm{~Hz}, P_{2}=850 \mathrm{~W}$
As ratio of $\frac{V}{f}$ is constant in both case.
So, $\left(B_{m} \propto \frac{V}{f}\right)$ is also constant.

$$
\begin{aligned}
& \because \approx E=4.44 f \phi_{m} N \\
& B_{m}=\frac{\phi_{m}}{A}=\frac{V}{4.44 f N A} \quad[N \text { and } A=\text { Constant }]
\end{aligned}
$$

Case 1: At normal voltage $V_{1}=440 \mathrm{~V}, f_{1}=50 \mathrm{~Hz}, P_{i}=2500 \mathrm{~W}$

$$
\begin{align*}
& P_{1}=K_{h} f+K_{e} f^{2} \\
& 2500=50 K_{h}+(50)^{2} K_{e} \\
& K_{h}+50 K_{e}=50 \tag{i}
\end{align*}
$$

Case 2: At $V_{2}=220 \mathrm{~V}, f_{2}=25 \mathrm{~Hz}, P_{2}=850 \mathrm{~W}$

$$
\begin{align*}
& P_{2}=K_{h} f_{2}+K_{e} f_{2}^{2} \\
& 850=25 K_{h}+(25)^{2} K_{e} \\
& K_{h}+25 K_{e}=34 \tag{ii}
\end{align*}
$$

By equation (i) and equation (ii),

PAGE
 GATE 2021 [Forenoon Session]
 6

$K_{h}+50 K_{e}=50$
$-K_{h}+25 K_{e}=50$
$25 K_{e}=16$
$K_{e}=0.64$
Putting the value of K_{e} in equation (i),

$$
\begin{aligned}
& K_{h}+50(0.64)=50 \\
& K_{h}=18
\end{aligned}
$$

At nominal voltage $V=440, f=50 \mathrm{~Hz}$
Hysteresis loss, $P_{h}=K_{h} f$

$$
P_{h}=18 \times 50=900 \mathrm{~W}
$$

Eddy current loss, $P_{e}=K_{e} f^{2}$

$$
P_{e}=(0.64) \times 50^{2}=1600 \mathrm{~W}
$$

Hence, the correct option is (B).

Question 6

In the given circuit, for maximum power to be delivered to R_{L}, its value should be \qquad Ω (Round off to 2 decimal places).

Ans. 1.414
Sol. Given circuit is as shown below,

page GATE 2021 [Forenoon Session]
 7

$$
\begin{aligned}
& Z_{t h}=\frac{2 \times j 2}{2+j 2} \\
& \left|Z_{t h}\right|=\frac{2 \times j 2}{\sqrt{2^{2}+2^{2}}}=\frac{4}{2 \sqrt{2}}=\sqrt{2} \Omega
\end{aligned}
$$

For maximum power transfer,

$$
R_{L}=\left|Z_{t h}\right|=\sqrt{2}=1.414 \Omega
$$

Hence, the correct answer is 1.414 .

Question 7

Consider the table given :

Constructional feature	Machine type	Mitigation
P. Damper bars	S. Induction motor	X. Hunting
Q. Skewed rotor slots	T. Transformer	Y. Magnetic locking
R. Compensating winding	U. Synchronous machine	Z. Armature reaction
	V. DC machine	

The correct combination that relates the constructional feature, machine type and mitigation is
(A) P-V-X, Q-U-Z, R-T-Y
(B) P-U-X, Q-S-Y, R-V-Z
(C) P-T-Y, Q-V-Z, R-S-X
(D) P-U-X, Q-V-Y, R-T-Z

Ans. B
Sol. (i) Damper bars are used in synchronous machines to eliminate hunting (P-U-X)
(ii) Skewed rotor slots are used in induction machine to reduce magnetic locking (cogging) (Q-S-Y)
(iii)Compensating winding is used in DC machine to neutralize armature reaction ($\mathrm{R}-\mathrm{V}-\mathrm{Z}$).

Hence, the correct option is (B).

Question 8

Let p and q be real numbers such that $p^{2}+q^{2}=1$. The eigen values of the matrix $\left[\begin{array}{cc}p & q \\ q & -p\end{array}\right]$ are
(A) 1 and 1
(B) 1 and -1
(C) j and $-j$
(D) $p q$ and $-p q$

Ans. B
Sol. Given : $p^{2}+q^{2}=1$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
p & q \\
q & -p
\end{array}\right]} \\
& {\left[\begin{array}{cc}
p-\lambda & q \\
q & -p-\lambda
\end{array}\right]=0}
\end{aligned}
$$

$$
(p-\lambda)(-p-\lambda)-q^{2}=0
$$

$$
\begin{array}{ll}
-p^{2}-p \lambda+\lambda p+\lambda^{2}-q^{2}=0 & \\
\lambda^{2}-p^{2}-q^{2}=0 & \left(\because p^{2}+q^{2}=1\right) \\
\lambda^{2}-1=0 & \\
\lambda= \pm 1 &
\end{array}
$$

Eigen value of given matrix would be 1 and -1 .
Hence, the correct option is (B).

Question 9

Engineering Mathematics (2M)

Let A be a 10×10 matrix such that A^{5} is null matrix and let I be the 10×10 identity matrix. The determinant of $A+I$ is \qquad .
Ans.
1
Sol. Given : $[A]_{10 \times 10}$
$A^{5}=0$
$\lambda^{5}=0$
$\lambda=0$
Eigen value of $[A+I]^{\prime}=\lambda+1$

$$
0+1=1
$$

Determinant of $[A+I]=1$
Hence, the correct answer is 1 .

Question 10

Let $f(x)$ be a real-valued function such that $f^{\prime}\left(x_{0}\right)=0$ for some $x_{0} \in(0,1)$ and $f^{\prime \prime}\left(x_{0}\right)>0$ for all $x \in(0,1)$. Then $f(x)$ has
(A) No local minimum in $(0,1)$
(B) One local maximum in $(0,1)$
(C) Exactly one local minimum in $(0,1)$
(D) Two distinct local minimum in $(0,1)$

Ans. C
Sol.

(i) When value will go from positive to negative then gradient will give negative number.
(ii) When value will go from negative to positive then gradient will give positive number.

So, $f(x)$ has exactly one local minimum in $(0,1)$.
Hence, the correct option is (C)

Question 11

Let $(-1-j),(3-j),(3+j)$ and $(-1+j)$ be the vertices of rectangle C in the complex plane. Assuming that C is traversed in counter-clockwise direction, the value of contour integral $\oint_{C} \frac{d z}{z^{2}(z-4)}$ is
(A) $\frac{j \pi}{2}$
(B) 0
(C) $\frac{-j \pi}{8}$
(D) $\frac{j \pi}{16}$

Ans. C
Sol. Given : Vertices of rectangle $=(-1-j),(3-j),(3+j)$ and $(-1+j)$

Poles $=0,0,4$
$z=0$ lie inside contour and $z=4$ lie outside of contour.

$$
\begin{aligned}
& R=\frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}}\left(z-z_{0}\right)^{n} f(z) \\
& R=\frac{1}{(2-1)!} \frac{d}{d z} z^{2} \frac{1}{z^{2}(z-4)} \\
& R=1 \times \frac{d}{d z} \frac{1}{(z-4)} \\
& R=\frac{-1}{(z-4)^{2}}=\frac{-1}{16}
\end{aligned}
$$

$\therefore \quad \oint_{C} \frac{d z}{z^{2}(z-4)}=2 \pi i\left(\frac{-1}{16}\right)=\frac{-j \pi}{8}$
Hence, the correct option is (C).

Question 12

Let $P(z)=z^{3}+(1+j) z^{2}+(2+j) z+3$, where z is complex number. Which one of the following is true?
(A) Conjugate $\{P(z)\}=P$ (Conjugate $\{z\}$) for all z
(B) The sum of the roots of $P(z)=0$ is a real number
(C) The complex roots of the equation $P(z)=0$ come in conjugate pairs.
(D) All the roots cannot be real

Ans. D

Sol. Given : $P(z)=z^{3}+(1+j) z^{2}+(2+j) z+3$
For standard $3{ }^{\text {rd }}$ order equation of the from

$$
\alpha x^{3}+\beta x^{2}+\gamma x+\delta=0
$$

If the roots are a, b and c then

$$
\begin{aligned}
& \text { Sum of roots } a+b+c=\frac{-\beta}{\alpha} \\
& \text { Product of roots } a \cdot b=\frac{-\delta}{\alpha}
\end{aligned}
$$

and $a b+b c+c a=\frac{\gamma}{\alpha}$
For given equation,

$$
a+b+c=\frac{-\beta}{\alpha}=\frac{-(1+j)}{1}=-(1+j)
$$

Hence all the roots cannot be real.

$$
a \cdot b \cdot c=\frac{-\delta}{\alpha}=\frac{-3}{1}=-3
$$

Complex roots can't be conjugate because sum of complex conjugate roots must be real.
Hence, the correct option is (D).

Question 13

Suppose the probability that a coin toss shows "head" is p, where $0<p<1$. The coin is tossed repeatedly until the first "head" appears. The expected number of tosses required is
(A) $\frac{p}{1-p}$
(B) $\frac{1-p}{p}$
(C) $\frac{1}{p}$
(D) $\frac{1}{p^{2}}$

Ans. C
Sol.

Number of tosses	1	2	3	4	5
Probability of outcomes	p	$p(1-p)$	$p(1-p)^{2}$	$p(1-p)^{3}$	$p(1-p)^{4}$

\therefore The expected number of tosses required is,

$$
\begin{aligned}
& E[X]=1 \times p+2 p(1-p)+3 p(1-p)^{2}+4 p(1-p)^{3}+\ldots . . \\
& E[X]=p\left[1+2(1-p)+3(1-p)^{2}+4(1-p)^{3}+\ldots . .\right] \\
& E[X]=p \times(1-1+p)^{-2}=p(p)^{-2} \\
& E[X]=\frac{p}{p^{2}}=\frac{1}{p}
\end{aligned}
$$

Hence, the correct option is (C).

In the circuit, switch ' S ' is in the closed position for a very long time. If the switch is opened at time $t=0$, then $i_{L}(t)$ in Amperes, for $t \geq 0$ is

(A) $8 e^{-10 t}$
(B) 10
(C) $8+2 e^{-10 t}$
(D) $10\left(1-e^{-2 t}\right)$

Ans. C
Sol. (i) For $\mathbf{t}<\mathbf{0}$,

The current flowing through inductor before the switch is opened is given by

$$
i\left(0^{-}\right)=\frac{10}{1}=10 \mathrm{~A}=i_{L}\left(0^{+}\right)
$$

(ii) For $\boldsymbol{t}>\mathbf{0}$,

The circuit diagram after the switch is opened is given by

(iii) For $t=\infty$,

The current flowing through inductor in steady state is given by

PAGE
 12

$$
\begin{aligned}
& i_{L}(\infty)=\frac{30+10}{5}=\frac{40}{5}=8 \\
& R_{e q}=5 \Omega \text { and } L=0.5 \mathrm{H}
\end{aligned}
$$

Time constant of the above circuit is given by,

$$
\tau=\frac{L}{R}=0.1 \mathrm{sec}
$$

The charging equation of first order RL circuit is given by,

$$
\begin{aligned}
& i_{L}(t)=i(\infty)+\left[i_{L}\left(0^{+}\right)-i_{L}(\infty)\right] e^{-t / \tau} \\
& i_{L}(t)=i(\infty)+\left[i_{L}\left(0^{+}\right)-i_{L}(\infty)\right] e^{-R t / L} \\
& i_{L}(t)=8+(10-8) e^{-10 t} \\
& i_{L}(t)=8+2 e^{-10 t}
\end{aligned}
$$

Hence, the correct option is (C).

Question 15

Analog Electronics (1M)

In the circuit shown, a 5 V Zener diode is used to regulate the voltage across load R_{0}. The input is an unregulated DC voltage with a minimum value of 6 V and a maximum value of 8 V . The value of R_{s} is 6Ω. The Zener diode has a maximum rated power dissipation of 2.5 W . Assuming the Zener diode to be ideal, the minimum value of R_{0} is \qquad Ω.

Ans. 30
Sol.

Given:

(i) $R_{s}=6 \Omega$
(ii) Minimum value of DC input

$$
\text { Voltage }=6 \mathrm{~V}
$$

(iii) Maximum value of

DC input voltage $=8 \mathrm{~V}$
Maximum rated power dissipation $=2.5 \mathrm{~W}$

$$
\begin{aligned}
& P_{z(\max)}=P_{\text {rating }} \\
& P_{\text {rating }}=2.5 \mathrm{~W}=V_{z} I_{z_{\max }} \\
& I_{z_{\max }}=\frac{2.5}{5} \\
& I_{z_{\max }}=0.5 \mathrm{~A}
\end{aligned}
$$

As load is fixed (i.e. $R_{0}=$ fixed)
So I_{L} is fixed.

$$
I_{0}(\text { varying })=I_{z}(\text { varying })+I_{L}(\text { fixed })
$$

So,

$$
\begin{aligned}
& I_{i n(\min)}=I_{z(\min)}+I_{L} \\
& I_{i n(\max)}=I_{z(\max)}+I_{L} \\
& I_{i n(\max)}=\frac{V_{i n(\max)}-V_{z}}{R_{s}} \\
& I_{i n(\max)}=\frac{8-5}{6}=0.5 \mathrm{~A} \\
& I_{i n(\min)}=\frac{V_{i n(\min)}-V_{z}}{R_{s}}=\frac{6-5}{6}=\frac{1}{6} \mathrm{~A}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& I_{i n(\mathrm{~min})}=I_{z(\min)}+I_{L} \\
& \frac{1}{6}=0+I_{L} \\
& I_{L}=\frac{1}{6} \mathrm{~A}
\end{aligned}
$$

Now,

$$
V_{0}=I_{L} R_{0}
$$

$$
5=\frac{1}{6} \times R_{0}
$$

$$
R_{0}=30 \Omega
$$

Hence, the correct answer is 30 .
Question 16
Consider a closed loop system as shown.

$$
G_{p}(s)=\frac{14.4}{s(1+0.1 s)}
$$

is the plant transfer function and $G_{c}(s)=1$ is the compensator. For a unit-step input, the output response has damped oscillations. The damped natural frequency is \qquad $\mathrm{rad} / \mathrm{s}$. (Round off to 2 decimal places).

page GATE 2021 [Forenoon Session]
 14

Ans. $\quad \mathbf{1 0 . 9 0}$
Sol. Given : $G_{p}(s)=\frac{14.4}{s(1+0.1 s)}$

$$
\begin{aligned}
& G_{p}(s)=\frac{14.4}{0.1 s(s+10)} \\
& G_{p}(s)=\frac{144}{s(s+10)}
\end{aligned}
$$

and

$$
\begin{array}{ll}
\text { and } & G_{c}(s)=1 \\
\therefore & G_{p}(s)_{C L T F}=\frac{144}{s^{2}+10 s+144} \tag{i}
\end{array}
$$

Now, comparing with the standard equation,

$$
\begin{equation*}
\Rightarrow \quad \frac{\omega_{n}^{2}}{s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}} \tag{ii}
\end{equation*}
$$

From equation (i) and (ii),

$$
\begin{aligned}
& \omega_{n}=12 \\
& 2 \xi \omega_{n}=10 \\
& \xi=\frac{10}{2 \times 12}=\frac{5}{12} \\
& \omega_{d}=\omega_{n} \sqrt{1-\xi^{2}} \\
& \omega_{d}=12 \sqrt{1-\left(\frac{5}{12}\right)^{2}}=12 \sqrt{\frac{144-25}{144}} \\
& \omega_{d}=12 \sqrt{\frac{119}{144}}=10.90
\end{aligned}
$$

Now,

Hence, the correct answer is 10.90 .

Question 17

2004Digital Electronics (1M)
A 16-bit synchronous binary up-counter is clocked with a frequency $f_{\text {clk }}$. The two most significant bits are ORed together to form an output Y. Measurements shows that Y is periodic and the duration for which Y the remains high in each period is 24 ms . The clock frequency $f_{\text {clk }}$ is \qquad MHz. (Round off to 2 decimal places)
Ans. 2.05
Sol. \quad Given counter $=16$ bit

$$
\begin{array}{r}
Q_{15} \\
Q_{14}
\end{array} Q_{13} \quad Q_{1} \quad Q_{0} \begin{aligned}
& 2^{16} \text { combination }\left\{\begin{array}{lllll}
0 & 0 & 0 & \ldots \ldots . .0 & 0 \\
1 & 1 & 1 & \ldots \ldots \ldots .1 & 1
\end{array}\right.
\end{aligned}
$$

If we fix $Q_{15} Q_{14}$ bit then $\left(Q_{13}\right.$ to $\left.Q_{0}\right)$ will take 2^{14} combination

$\boldsymbol{Y}=\boldsymbol{Q}_{15}+\boldsymbol{Q}_{14}$	\boldsymbol{Q}_{15}	\boldsymbol{Q}_{14}	$\boldsymbol{Q}_{13} \ldots \ldots \ldots \boldsymbol{Q}_{1} \boldsymbol{Q}_{\mathbf{0}}$
$0\left\{\begin{array}{c}0 \\ 0\end{array}\right.$	0 0	$\left\{2^{14}\right.$ combination	
$1\{$	0	1	
0	1	$\left\{2^{14}\right.$ combination	
$1\{$	1	0	
1	0	$\left\{2^{14}\right.$ combination	
$1\{$	1	1	
1	1	$\left\{2^{14}\right.$ combination	

So,

$$
Y=0 \text { for } 2^{14} \text { times. [25 \%] }
$$

$Y=1$ for 3×2^{14} times. [75%]

Given that, $\quad Y=1$ for 24 ms
So, $\quad Y=0$ for $\frac{24 \times 25}{75}=8 \mathrm{~ms}$
So, total time period $=8+24=32 \mathrm{~ms}$
Time period of clock, $T_{\text {clk }}=\frac{32 \mathrm{~ms}}{2^{16}}$

$$
\begin{aligned}
& f_{\text {clk }}=\frac{2^{16}}{32 \times 10^{-3}} \\
& f_{\text {clk }}=2.048 \mathrm{MHz} \approx 2.05 \mathrm{MHz}
\end{aligned}
$$

Hence, the correct answer is 2.05 .

Question 18

Analog Electronics (1M)
In the BJT circuit shown, beta of the PNP transistor is 100 . Assume $V_{B E}=-0.7 \mathrm{~V}$. The voltage across R_{C} will be 5 V when R_{2} is \qquad $\mathrm{k} \Omega$. (Round off to 2 decimal places)

Ans. 18.099
Sol. Given :
(i) $\beta=100$
(ii) $V_{B E}=-0.7 \mathrm{~V}$
(iii) $V_{s}=12 \mathrm{~V}$

$I_{C}=\beta I_{B}$
$1.51=100 I_{B}$
$I_{B}=1.51 \times 10^{-2} \mathrm{~mA}$
$I_{E}=(1+\beta) I_{B}$
$I_{E}=1.52 \mathrm{~mA}$

$$
12-1.2 \times 1.5251-0.7-V_{R_{2}}=0
$$

$$
V_{R_{2}}=9.46988
$$

$$
I=\frac{12-9.46988}{4.7}=0.53 \mathrm{~mA}
$$

$$
I_{R_{2}}=0.53-\frac{1.51}{100}=0.52322 \mathrm{~mA}
$$

$$
R_{2}=\frac{V_{R_{2}}}{I_{R_{2}}}=\frac{9.46988}{0.52322}=18.099 \mathrm{k} \Omega
$$

Question 19

Which one of the following vector functions represents a magnetic field \vec{B} ?
(\hat{x}, \hat{y}, and \hat{z} are unit vectors along x-axis, y-axis and z-axis respectively)
(A) $10 x \hat{x}+20 y \hat{y}-30 z \hat{z}$
(B) $10 y \hat{x}+20 x \hat{y}-10 z \hat{z}$
(C) $10 z \hat{x}+20 y \hat{y}-30 x \hat{z}$
(D) $10 x \hat{x}-30 z \hat{y}+20 y \hat{z}$

Ans. A
Sol. The vector functions represents a magnetic field \vec{B} if $\oiint \vec{B} \cdot d s=0$
Where, $\vec{B}=$ Magnetic flux density
By applying Divergence theorem,

$$
\iiint(\nabla \cdot \vec{B}) d s=0
$$

$$
\vec{\nabla} \cdot \vec{B}=0
$$

Checking from options,
Option (A) : $\quad \vec{\nabla} \cdot \vec{B}=10+0+20=30$
Option (B) : $\quad \vec{\nabla} \cdot \vec{B}=10+20-30=0$
Option (C) : $\quad \vec{\nabla} \cdot \vec{B}=0+0-10=-10$
Option (D): $\quad \vec{\nabla} \cdot \vec{B}=0+20+0=20$

$$
\vec{B}=10 x \hat{x}+20 y \hat{y}-30 z \hat{z} \text { represents the magnetic field }
$$

Hence, the correct option is (A).

Question 20

Electromagnetic Theory (1M)
A $1 \mu \mathrm{C}$ point charge is held at the origin of a cartesian coordinate system. If a second point charge of $10 \mu \mathrm{C}$ is moved from $(0,10,0)$ to $(5,5,5)$ and subsequently to $(5,0,0)$, then the total work done is mJ . (Round off to 2 decimal places). Take $\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9}$ in SI units. All coordinates are in meters.
Ans. 9
Sol. Given :

$$
(5,0,0)
$$

Now electric field because of $1 \mu \mathrm{C}$ is,

$$
\begin{aligned}
& \frac{1 \times 10^{-6}}{4 \pi \varepsilon_{0} \times r^{2}} \hat{a}_{r}=\vec{E}_{r} \\
& \vec{\nabla} \times \vec{E}_{r}=\left|\begin{array}{ccc}
\hat{a}_{r} & \hat{a}_{\theta} & a_{\phi} \\
\frac{\partial}{\partial_{r}} & \frac{\partial}{\partial_{\theta}} & \frac{\partial}{\partial_{\phi}} \\
F(r) & 0 & 0
\end{array}\right|
\end{aligned}
$$

$\vec{\nabla} \times \vec{E}=0$ as electric field is curl free, path independent, irrotational.
As electric field is path independent so instead of going from A to B to C .
We can go from A to C directly.
So,

$$
\begin{aligned}
& V_{A C}=\frac{1 \times 10^{-6}}{4 \pi \varepsilon_{0} 10}-\frac{1 \times 10^{-6}}{4 \pi \varepsilon_{0} 5} \\
& V_{A C}=\frac{1 \times 10^{-6}}{4 \pi \varepsilon_{0}}\left\{\frac{1}{10}-\frac{1}{5}\right\}=\frac{1 \times 10^{-6}}{4 \pi \varepsilon_{0}} \times \frac{1}{10}
\end{aligned}
$$

So now work done $=q V$

$$
W=10 \times 10^{-6} \times \frac{1 \times 10^{-6}}{4 \pi \varepsilon_{0} \times 10}
$$

$$
W=10 \times 10^{-12} \times 9 \times 10^{9} \times 10^{-1}
$$

Work done $=0.009$ Joules $=9 \mathrm{~mJ}$
Hence, the correct answer is 9 .

Question 21

In the given circuit, the value of capacitor C that makes current $I=0$ is \qquad $\mu \mathrm{F}$.

Ans. 20
Sol. Given circuit is as shown below,

For $i=0, Z$ must be infinite,
For Z to be infinite X_{c} must be equals to 10Ω

$$
\begin{aligned}
& X_{c}=10 \\
& \frac{1}{2 \pi f C}=10 \\
& 10=\frac{1}{5000 \mathrm{C}} \\
& C=\frac{1}{50000}=20 \mu \mathrm{~F}
\end{aligned}
$$

Hence, the correct answer is 20 .
Question 22
Power System (2M)
A three-phase balanced voltage is applied to the load shown. The phase sequence is RYB. The ratio $\left|\frac{I_{B}}{I_{R}}\right|$ is \qquad

Ans. 1
Sol. Given circuit is as shown below,

Voltage across capacitor is $V_{R B}$ and voltage across inductor is $V_{Y B}$ (where, $V_{R B}, V_{Y B}$ are line voltages)

$$
V_{R Y}=V \angle 0^{0} \mathrm{~V}
$$

$$
V_{Y B}=V \angle-120^{\circ} \mathrm{V}
$$

$$
V_{B R}=V \angle 120^{\circ} \mathrm{V}
$$

$$
I_{R}=\frac{V_{B R}}{-j 10 \Omega}=\frac{V \angle-60^{\circ}}{-j 10}=\frac{V}{10} \angle 30^{\circ} \mathrm{A}
$$

$$
I_{Y}=\frac{V_{Y B}}{j 10}=\frac{V \angle-120^{\circ}}{j 10}=\frac{V}{10} \angle-210^{\circ} \mathrm{A}
$$

From the above circuit the value of I_{B} is given by,

$$
\begin{aligned}
& I_{B}=-\left(I_{R}+I_{y}\right) \\
& I_{B}=-\left[\frac{V}{10} \angle 30^{\circ}+\frac{V}{10} \angle-210^{\circ}\right] \mathrm{A}=-\frac{V}{10} \angle 90^{\circ} \mathrm{A} \\
& \left|I_{R}\right|=\frac{V}{10} \\
& \left|I_{B}\right|=\frac{V}{10} \\
& \left|\frac{I_{B}}{I_{Y}}\right|=1
\end{aligned}
$$

Hence, the correct answer is 1 .

Two generators have cost functions F_{1} and F_{2}. Their incremental-cost characteristics are

$$
\frac{d F_{1}}{d P_{1}}=40+0.2 P_{1} \text { and } \frac{d F_{2}}{d P_{2}}=32+0.4 P_{2}
$$

They need to deliver a combined load of 260 MW. Ignoring the network losses, for economic operation, the generations P_{1} and P_{2} (in MW) are
(A) $P_{1}=P_{2}=130$
(B) $P_{1}=160, P_{2}=100$
(C) $P_{1}=140, P_{2}=120$
(D) $P_{1}=120, P_{2}=140$

Ans. B
Sol. Given :
Incremental cost, $\frac{d F_{1}}{d P_{1}}=40+0.2 P_{1}$

$$
\frac{d F_{2}}{d P_{2}}=32+0.4 P_{2}
$$

Total load demand, $P_{D}=260 \mathrm{MW}$
For minimum cost (without considering loss) (I.C) of all the units must be same.

$$
\begin{align*}
& \frac{d F_{1}}{d P_{1}}=\frac{d F_{2}}{d P_{2}} \\
& 40+0.2 P_{1}=32+0.4 P_{2} \\
& 0.2 P_{1}-0.4 P_{2}=-8 \tag{i}
\end{align*}
$$

and

$$
\begin{align*}
& P_{1}+P_{2}=260 \\
& 0.4 P_{1}+0.4 P_{2}=104 \tag{ii}
\end{align*}
$$

Solving equation (i) and (ii),

$$
\begin{aligned}
& 0.2 P_{1}-0.4 P_{2}=-8 \\
& 0.4 P_{1}+0.4 P_{2}=104 \\
& 0.6 P_{1}=96 \\
& P_{1}=160 \mathrm{MW} \\
& P_{2}=(260-160) \mathrm{MW}=100 \mathrm{MW}
\end{aligned}
$$

Hence, the correct option is (B).

Question 24

Power System (2M)

A 3-bus network is shown. Consider generaters as ideal voltage sourees. If rows 1, 2 and 3 of the $Y_{\text {as }}$ matrix correspond to bus 1, 2 and 3 respectively, then $Y_{b s}$ of the network is

(A) $\left[\begin{array}{ccc}-4 j & j & j \\ j & -4 j & j \\ j & j & -4 j\end{array}\right]$
(B) $\left[\begin{array}{ccc}-4 j & 2 j & 2 j \\ 2 j & -4 j & 2 j \\ 2 j & 2 j & -4 j\end{array}\right]$
(C) $\left[\begin{array}{ccc}-\frac{3}{4} j & \frac{1}{4} j & \frac{1}{4} j \\ \frac{1}{4} j & -\frac{3}{4} j & \frac{1}{4} j \\ \frac{1}{4} j & \frac{1}{4} j & \frac{-3}{4} j\end{array}\right]$
(D) $\left[\begin{array}{ccc}\frac{-1}{2} j & \frac{1}{4} j & \frac{1}{4} j \\ \frac{1}{4} j & -\frac{1}{2} j & \frac{1}{4} j \\ \frac{1}{4} j & \frac{1}{4} j & \frac{-1}{2} j\end{array}\right]$

Ans. C
Sol.

From the above circuit diagram, output voltage is given by,

$$
V_{0}=j\left[I_{1}+I_{2}+I_{3}\right]
$$

Applying KVL at bus 1 ,

$$
\begin{align*}
& V_{1}-I_{1}[j]=j\left[I_{1}+I_{2}+I_{3}\right] \\
& j 2 I_{1}+j I_{2}+j I_{3}=V_{1} \tag{i}
\end{align*}
$$

Similarly at bus 2 ,

$$
j I_{1}+j 2 I_{2}+j I_{3}=V_{2}
$$

Similarly at bus 3 ,

page GATE 2021 [Forenoon Session]
 23

$$
\begin{equation*}
j I_{1}+j I_{2}+j 2 I_{3}=V_{3} \tag{iii}
\end{equation*}
$$

Solving equation (i), (ii) and (iii),

$$
\begin{aligned}
& I_{1}=-\frac{3}{4} j V_{1}+\frac{1}{4} j V_{2}+\frac{1}{4} j V_{3} \\
& I_{2}=\frac{1}{4} j V_{1}-\frac{3}{4} j V_{2}+\frac{1}{4} j V_{3} \\
& I_{3}=\frac{1}{4} j V_{1}+\frac{1}{4} j V_{2}-\frac{3}{4} j V_{3} \\
& Y \text { bus }=\left[\begin{array}{ccc}
-\frac{3}{4} j & \frac{1}{4} j & \frac{1}{4} j \\
\frac{1}{4} j & \frac{-3}{4} j & \frac{1}{4} j \\
\frac{1}{4} j & \frac{1}{4} j & \frac{-3}{4} j
\end{array}\right]
\end{aligned}
$$

Hence,

Hence, the correct option is (C).
Question 25
Signals \& Systems (2M)
Let $f(t)$ be an even function, i.e., $f(-t)=f(t)$ for all t. Let the Fourier transform of $f(t)$ be defined as
$F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t$. Suppose $\frac{d F(\omega)}{d \omega}=-\omega F(\omega)$ for all ω and $F(0)=1$. Then
(A) $f(0)<1$
(B) $f(0)>1$
(C) $f(0)=1$
(D) $f(0)=0$

Ans. A

Sol. Given :

(i) $f(t)$ is even i.e. $f(-t)=f(t)$
(ii) $\frac{d F(\omega)}{d \omega}=-\omega F(\omega)$ for all ω
(iii) $F(0)=1$

The only even function, whose differentiation contains itself is a Gaussian function represented as $e^{-a 0^{2}}$

Selecting a Gaussian function which satisfies all mentioned condition,

$$
\begin{aligned}
& F(\omega)=e^{-\frac{\omega^{2}}{2}} \\
& \frac{d}{d \omega} F(\omega)=-\frac{1}{2} \times 2 \omega \times e^{-\frac{\omega^{2}}{2}}=-\omega F(\omega) \\
& F(0)=\left.e^{-\frac{\omega^{2}}{2}}\right|_{\omega=0}=1
\end{aligned}
$$

So, the required Fourier transform is,

$$
f(t) \longleftrightarrow e^{-\frac{\omega^{2}}{2}}=e^{-\frac{4 \pi^{2} f^{2}}{2}}=e^{-2 \pi^{2} f^{2}}
$$

PAGE
 24

$$
\begin{equation*}
f(t) \longleftrightarrow e^{-\pi(\sqrt{2 \pi} f)^{2}} \tag{i}
\end{equation*}
$$

From standard result, Fourier transform only Gaussian function results in Gaussian, i.e.

$$
e^{-\pi t^{2}} \longleftrightarrow e^{-\pi f^{2}}
$$

To obtain a transform as given in equation (i), applying time scaling property, replacing ' t ' by $\frac{t}{\sqrt{2 \pi}}$, we get

$$
\begin{aligned}
& e^{-\pi\left(\frac{t}{\sqrt{2 \pi}}\right)^{2}} \longleftrightarrow \frac{1}{1 / \sqrt{2 \pi}} e^{-\pi\left(\frac{f}{1 / \sqrt{2 \pi}}\right)^{2}} \\
& e^{-\frac{t^{2}}{2}} \longleftrightarrow \sqrt{2 \pi} e^{-2 \pi^{2} f^{2}} \\
& \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} \longleftrightarrow e^{-2 \pi^{2} f^{2}}
\end{aligned}
$$

Comparing with equation (i),

$$
\begin{array}{ll}
& f(t)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} \\
\therefore & f(0)=\left.\frac{1}{\sqrt{2 \pi}} e^{\frac{-t^{2}}{2}}\right|_{t=0}=\frac{1}{\sqrt{2 \pi}} \\
\therefore \quad & f(0)<1
\end{array}
$$

Hence, the correct option is (A).

Question 26

Signals \& Systems (2M)
Consider a continuous time signal $x(t)$ defined by

$$
x(t)=0 \text { for }|t|>1 \text { and } x(t)=1-|t| \text { for }|t| \leq 1
$$

Let the Fourier transform of $x(t)$ be defined as $X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$. The maximum magnitude of $X(\omega)$ is \qquad .
Ans. 1
Sol. Given : $x(t)=\left\{\begin{array}{cl}0, & |t|>1 \\ 1-|t|, & |t| \leq 1\end{array}\right.$
Comparing $x(t)$ with standard definition of triangular function,

PAGE
 25

$$
\operatorname{Atri}\left(\frac{t}{\tau}\right)=\left\{\begin{array}{cl}
0, & |t|>\tau \\
A\left[1-\frac{|t|}{\tau}\right], & |t| \leq \tau
\end{array}\right.
$$

So, given $x(t)$ is a triangular function of amplitude $A=1$ and half width $\tau=1$ as shown in figure,

$$
x(t)=\operatorname{tri}(t)
$$

From standard result,

$$
\begin{array}{ll}
& A \operatorname{tri}\left(\frac{t}{\tau}\right) \longleftrightarrow A \tau \operatorname{sinc}^{2}(f \tau) \text { or } A \tau S a^{2}\left(\frac{\omega \tau}{2}\right) \\
& \operatorname{tri}(t) \longleftrightarrow{ }_{\tau=1}^{\longrightarrow} \operatorname{sinc}^{2}(f) \text { or } S a^{2}\left(\frac{\omega}{2}\right) \tag{R}\\
\therefore \quad & X(\omega)=S a^{2}\left(\frac{\omega}{2}\right)=\left\{S a\left(\frac{\omega}{2}\right)\right\}^{2} \\
& S a\left(\frac{\omega}{2}\right)=\frac{\sin \left(\frac{\omega}{2}\right)}{\left(\frac{\omega}{2}\right)}
\end{array}
$$

Peak value of $\operatorname{Sa}\left(\frac{\omega}{2}\right)$ is 1 which occurs at $\omega=0$ as,

$$
\lim _{t \rightarrow 0} \frac{\sin t}{t}=1
$$

As, $\quad X(\omega)=\left[S a\left(\frac{\omega}{2}\right)\right]^{2}$

$$
X(\omega)=\left[S a\left(\frac{\omega}{2}\right)\right]^{2}
$$

Hence, maximum magnitude of $X(\omega)$ is,

$$
|X(\omega)|_{\max }=(1)^{2}=1
$$

Hence, the maximum magnitude of $X(\omega)$ is 1 .

Question 27

Signals \& Systems (1M)
If the input $x(t)$ and output $y(t)$ of a system are related as $y(t)=\max [0, x(t)]$, then the system is
(A) Linear and time-variant
(B) Linear and time-invariant
(C) Non-linear and time-variant
(D) Non-linear and time-invariant

Sol. Given input output relationship is

$$
\begin{aligned}
& y(t)=\operatorname{Max}[0, x(t)] \\
& y(t)=\left\{\begin{array}{cc}
0, & x(t) \leq 0 \\
x(t), & x(t)>0
\end{array}\right.
\end{aligned}
$$

As output is splitted not in time but for values of $x(t)$, hence the system will not follow superposition, so it is not a linear system.
As there is no time scaling or any coefficient multiplied that is function A time and no extra terms other than $x(t)$ and $y(t)$, so the system is time invariant.
Hence, the correct option is (D).

Question 28

Control System (1M)

The Bode magnitude plot for the transfer function $\frac{V_{0}(s)}{V_{i}(s)}$ of the circuit is as shown. The value of R is
\qquad Ω. (Round off to 2 decimal places)

Ans. 0.1
Sol. Given circuit is as shown below,

Transforming the above circuit in Laplace domain

Here, $L=1 \mathrm{mH}, C=250 \mu \mathrm{~F}$
The transfer function $T(s)$ for above circuit is given by,

PAGE GATE 2021 [Forenoon Session]
 27

$$
\begin{aligned}
& T(s)=\frac{V_{0}(s)}{V_{i}(s)}=\frac{\frac{1}{s C}}{R+s L+\frac{1}{s C}} \\
& T(s)=\frac{V_{0}(s)}{V_{i}(s)}=\frac{\frac{1}{s C}}{\frac{s^{2} L C+s C R+1}{s C}} \\
& T(s)=\frac{V_{0}(s)}{V_{i}(s)}=\frac{\frac{1}{L C}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}
\end{aligned}
$$

So, characteristic equation of above transfer function is,

$$
\begin{equation*}
s^{2}+\frac{R}{L} s+\frac{1}{L C}=0 \tag{i}
\end{equation*}
$$

Comparing equation (i) with standard characteristics equation, $s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}=0$ then

$$
\begin{align*}
\therefore & \omega_{n}=\frac{1}{\sqrt{L C}} \\
& \xi=\frac{R}{2} \sqrt{\frac{C}{L}} \tag{ii}
\end{align*}
$$

Now from the Bode plot, resonant peak M_{r} is 26 dB at $\omega_{r}=2000 \mathrm{rad} / \mathrm{sec}$,

$$
\begin{aligned}
& \left(M_{r}\right)_{\mathrm{dB}}=26 \mathrm{~dB}=20 \log M_{r} \\
& M_{r}=19.95 \approx 20
\end{aligned}
$$

So,

$$
M_{r}=\frac{1}{2 \xi \sqrt{1-\xi^{2}}}=20
$$

Solving above equation, we get $\xi=0.025$
Now from equation (ii),

$$
\begin{aligned}
& \xi=\frac{R}{2} \sqrt{\frac{C}{L}} \\
& 0.025=\frac{R}{2} \sqrt{\frac{250 \times 10^{-6}}{1 \times 10^{-3}}} \\
& 0.000625=\frac{R^{2}}{4} \times 0.25 \\
& R^{2}=0.01 \Omega \\
& R=0.1 \Omega
\end{aligned}
$$

$$
\begin{array}{r}
2 \mathrm{~V} 1 \times 10^{-5} \\
0.000625=\frac{R^{2}}{4} \times 0.25
\end{array}
$$

Hence, the correct answer is 0.1 .
Question 29
Electrical Machine (2M)
An 8 pole, $50 \mathrm{~Hz}, 3$ phase, slip-ring induction motor has an effective rotor resistance of 0.08Ω per phase. Its speed at maximum torque is 650 rpm . The additional resistance per phase that must be inserted in the rotor to achieve maximum torque at start is \qquad Ω. (Round off to 2 decimal places). Negleet magnetizing eurrent and stater leakage impedanee. Consider equivalent eireuit parameters referred to stator.
Ans. 0.52

Sol. From torque-slip characteristic of 3-ф induction motor,

Given : Three phase induction motor
(i) Poles, $P=8$
(ii) Frequency, $f=50 \mathrm{~Hz}$
(iii)Rotor resistance, $R_{2}=0.08 \Omega$ /phase
(iv) Speed corresponding to maximum torque $=650 \mathrm{rpm}$

$$
N_{s}=\frac{120 f}{p}=\frac{120 \times 50}{8}=750 \mathrm{rpm}
$$

Speed corresponding to maximum torque,

$$
\begin{aligned}
& s_{m}=\frac{N_{s}-N_{r}}{N_{s}} \\
& s_{m}=\frac{750-650}{750}=0.133
\end{aligned}
$$

Rotor resistance/phase, $R_{2}=0.08 \Omega$

$$
\begin{equation*}
s_{m}=\frac{R_{2}}{X_{2}} \tag{i}
\end{equation*}
$$

The additional resistance per phase that must be inserted in the rotor circuit to achieve maximum torque at start is $R_{\text {ext }}$.
To obtain the maximum torque at starting, maximum slip, $s_{m}=1$.

$$
\begin{equation*}
s_{m}=\frac{R_{2}+R_{e x t}}{X_{2}} \tag{ii}
\end{equation*}
$$

From equation (i) and (ii),

$$
\begin{aligned}
& \frac{R_{2}}{S_{m}}=\frac{R_{2}+R_{e x t}}{S_{m}} \\
& \frac{0.08}{0.133}=\frac{0.08+R_{e x t}}{1}
\end{aligned}
$$

PAGE GATE 2021 [Forenoon Session]
 29

$$
R_{e t}=0.52 \Omega
$$

Hence, the correct answer is 0.52 .
Question 30
Electrical Machine (1M)
The power input to a $500 \mathrm{~V}, 50 \mathrm{~Hz}, 6$ pole, 3 phase induction motor running at 975 rpm is 40 kW . The stator losses are 1 kW . If the total friction and windage losses are 2.025 kW , then the efficiency is
\qquad \%.
Ans. 90
Sol. Given :
(i) Input power, $P_{i n}=40 \mathrm{~kW}$
(ii) Voltage, $V=500 \mathrm{~V}$
(iii)Frequency $f=50 \mathrm{~Hz}$
(iv)Pole $P=6$
(v) Rotor speed, $N_{r}=975 \mathrm{rpm}$
(vi) The total stator losses are $1 \mathrm{~kW}=1000 \mathrm{~W}$
(vii) Total friction and windage loss $=2.025 \mathrm{~kW}=2025 \mathrm{~W}$

Air gap power, $P_{g}=P_{i n}-$ Stator losses

$$
P_{g}=40000-1000=39000 \mathrm{~W}
$$

Rotor copper losses, $P_{c u}=s P_{g}$
So,

$$
\begin{aligned}
& P_{m}=P_{g}-s P_{g} \\
& P_{m}=(1-s) P_{g}
\end{aligned}
$$

Synchronous speed, $N_{s}=\frac{120 f}{P}$

$$
N_{s}=\frac{120 \times 50}{6}=1000 \mathrm{rpm}
$$

So, slip $\quad s=\frac{N_{s}-N_{r}}{N_{s}}=\frac{1000-975}{1000}=0.025$

So,

$$
P_{m}=(1-0.025) \times 39000=38025 \mathrm{~W}
$$

Shaft power, $\quad P_{s h}=P_{m}-$ Frictional and windage losses

$$
P_{s h}=38025-2025=36000 \mathrm{~W}
$$

Efficiency, $\quad \eta=\frac{P_{0}}{P_{i n}}=\frac{P_{s h}}{P_{i n}}$

$$
\% \eta=\frac{36000}{40000} \times 100=90 \%
$$

Hence, the correct answer is 90 .

Question 31

Electrical Machine (2M)
A belt-driven DC shunt generator running at 300 rpm delivers 100 kW to a 200 V DC grid. It continues to run as a motor when the belt breaks, taking 10 kW from the DC grid. The armature resistance is 0.025Ω, field resistance is 50Ω and brush drop is 2 V . Ignoring armature reaction, the speed of the motor is \qquad rpm. (Round off to 2 decimal places.)
Ans. 275.00 to 275.25 (275.186)
Sol.

Case 1: When machine acts as generator,
(i) Power output, $P_{0}=100 \mathrm{~kW}$
(ii) Terminal voltage, $V_{t}=200 \mathrm{~V}$

Load current, $I_{L}=\frac{P_{0}}{V_{t}}=\frac{100 \mathrm{~kW}}{200}=500 \mathrm{~A}$

$$
\begin{aligned}
& I_{s h}=\frac{V_{t}}{R_{s h}}=\frac{200}{50}=4 \mathrm{~A} \\
& I_{a}=I_{L}+I_{s h}=500+4=504 \mathrm{~A}
\end{aligned}
$$

Generated voltage, $E_{g}=V_{t}+I_{a} R_{a}+V_{B D}$

$$
\begin{aligned}
& E_{g}=200+(504 \times 0.025)+2 \\
& E_{g}=214.6 \mathrm{~V}
\end{aligned}
$$

Case 2 : When machine continue to run as a motor,
(i) Power input, $P_{\text {in }}=10 \mathrm{~kW}$
(ii) Terminal voltage of busbar, $V_{t}=200 \mathrm{~V}$

Supply current, $I_{L}=\frac{P_{i n}}{V_{t}}=\frac{10 \mathrm{~kW}}{200}=50 \mathrm{~A}$

$$
I_{a}=I_{L}-I_{s h}=50-4=46
$$

$\therefore \quad$ Back emf of motor, $E_{b}=V-I_{a} R_{a}-V_{b}$

$$
E_{b}=200-(46 \times 0.025)-2=196.85 \mathrm{~V}
$$

When machine acts as generator, $E_{g} \propto \phi_{f g} N_{g}$
\therefore Speed of generator, $N_{g} \propto \frac{E_{g}}{\phi_{f g}}$
When machine acts as motor, $E_{b} \propto \phi_{f n} N_{m}$
\therefore Speed of motor, $N_{m} \propto \frac{E_{b}}{\phi_{f m}}$
From equation (i) and (ii), we get

$$
\begin{aligned}
& \frac{N_{m}}{N_{g}}=\frac{E_{b}}{E_{g}} \times \frac{\phi_{f g}}{\phi_{f m}} \\
& \frac{N_{m}}{N_{g}}=\frac{E_{b}}{E_{g}} \times \frac{I_{f g}}{I_{f m}}=\frac{E_{b}}{E_{g}} \times \frac{\frac{V}{\frac{R_{f}}{R_{f}}}}{\therefore} \quad \\
\therefore & \frac{N_{m}}{N_{g}}=\frac{E_{b}}{E_{g}} \\
\therefore \quad & N_{m}=N_{g} \times \frac{E_{b}}{E_{g}}=300 \times \frac{196.85}{214.6}=275.186
\end{aligned}
$$

$\therefore \quad$ Speed of motor, $N_{m}=275.186 \mathrm{rpm}$
Hence, the correct answer is 275.186
Question 32
Digital Electronics (2M)
A counter is constructed with three D flip-flops. The input-output pairs are named as $\left(D_{0}, Q_{0}\right)$, $\left(D_{1}, Q_{1}\right)$ and $\left(D_{2}, Q_{2}\right)$, where the subscript 0 denotes LSB. The output sequence is desired to be Graycode sequence $000,001,011,010,110,111,101$ and 100 , repeating periodically. Note that the bits are listed in the $Q_{2} Q_{1} Q_{0}$ format. The combination logic expression for D_{1} is
(A) $Q_{2} Q_{1} Q_{0}$
(B) $Q_{2} Q_{0}+Q_{1} \bar{Q}_{0}$
(C) $\bar{Q}_{2} Q_{0}+Q_{1} \bar{Q}_{0}$
(D) $Q_{2} Q_{1}+\bar{Q}_{2} \bar{Q}_{1}$

Ans. C

Sol. Given : $000 \rightarrow 001 \rightarrow 011 \rightarrow 010 \rightarrow 100 \rightarrow 111 \rightarrow 101 \rightarrow 100$

Present state			Next state				Input		
$\boldsymbol{Q}_{\mathbf{2}}$	$\boldsymbol{Q}_{\mathbf{1}}$	$\boldsymbol{Q}_{\mathbf{0}}$	$\boldsymbol{Q}_{\mathbf{2}}^{+}$	$\boldsymbol{Q}_{\mathbf{+}}$	$\boldsymbol{Q}_{\mathbf{0}}^{+}$	$\boldsymbol{D}_{\mathbf{2}}$	$\boldsymbol{D}_{\mathbf{1}}$	$\boldsymbol{D}_{\mathbf{0}}$	
0	0	0	0	0	1	0	0	1	
0	0	1	0	1	1	0	1	1	
0	1	1	0	1	0	0	1	0	
0	1	0	1	0	0	1	0	0	
1	0	0	1	1	1	1	1	1	
1	1	1	1	0	1	1	0	1	
1	0	1	1	0	0	1	0	0	
1	0	0	0	0	0	0	0	0	

$$
D_{1}=\bar{Q}_{2} Q_{0}+Q_{1} \bar{Q}_{0}
$$

Hence, the correct answer is (C).

Question 33

Power System (1M)

An alternator with an internal voltage of $1 \delta_{1}$ pu and synchronous reactance of 0.4 pu is connected by a transmission line of reactance 0.1 pu to a synchronous motor having synchronous reactance 0.35 pu and internal voltage of $0.85 \angle \delta_{2}$ pu. If the real power supplied by the alternator is 0.866 pu , then $\left(\delta_{1}-\delta_{2}\right)$ is \qquad degrees (Round off to 2 decimal places). (Machines are of non-salient type.
Neglect resistances)
Ans. 60
Sol. Given :
(i) $E_{g} \angle \delta_{1}=1 \angle \delta_{1}$
(ii) $X_{g}=j 0.4 \mathrm{pu}$
(iii) $X_{l}=j 0.1 \mathrm{pu}$
(iv) $X_{m}=j 0.35 \mathrm{pu}$
(v) $E_{m} \angle \delta_{2}=0.85 \angle \delta_{2}$ pu

Active power transfered from generator to motor is 0.866 pu.

Hence, the correct answer is 60 .
Question 34

Control System (2M)

In the given figure, plant $G_{p}(s)=\frac{2.2}{(1+0.1 s)(1+0.4 s)(1+1.2 s)}$ and compensator $G_{c}(s)=K\left[\frac{1+T_{1} s}{1+T_{2} s}\right]$.
The external disturbance input is $D(s)$. It is desired that when the disturbance is a unit step, the steady state error should not exceed 0.1 unit. The minimum value of K is \qquad . (Round off to 2 decimal places)

Ans. 10.45 (MTA)

Sol. Method 1 :
Given : $G_{p}(s)=\frac{2.2}{(1+0.1 s)(1+0.4 s)(1+1.2 s)}$ $G_{c}(s)=K\left[\frac{1+T_{1} s}{1+T_{2} s}\right]$

Put $R(s)=0, C(s)=G_{p}\left[E(s) G_{c}(s)+D\right]$
$-E=G_{p} G_{c} E+G_{p} D$

$$
-E\left[1+G_{p} G_{c}\right]=G_{p} D
$$

page GATE 2021 [Forenoon Session]

$$
\begin{aligned}
& E(s)=\frac{-G_{p} D}{1+G_{p} G_{c}} \\
& e_{s s}=\lim _{s \rightarrow 0} S E(s) \\
& e_{s s}=\frac{-2.2}{1+2.2 K} \\
& e_{s s} \leq 0.1 \\
& \frac{-22}{1+22 K} \leq 0.1 \\
& -2.2 \leq 0.1+0.22 K \\
& 0.22 K \geq-2.3 \\
& K \geq-10.45 \\
& K_{\min }=-10.45
\end{aligned}
$$

Method 2:

$$
\begin{aligned}
& G(s)-C(s)=E(s) \\
& G(s)=0 \\
& -C(s)=E(s) \\
& {\left[E(s) \times G_{c}(s)+D(s)\right] G_{D}(s)=-E(s)} \\
& D(s) G_{P}(s)+E(s) \times G_{c}(s) \times h_{p}(s)+E(s)=1 \\
& E(s)=\left\{\frac{1-D(s) G_{p}(s)}{1+G_{C}(s) G_{P}(s)}\right\} \\
& =\frac{1-\frac{1}{s}\left(\frac{2.2}{(1+0.15)(1+0.45)(1+1.25)}\right)}{1+k\left[\frac{1+T_{1} s}{1+T_{2} s}\right]\left[\frac{2.2}{(1+0.15)(1+0.45)(1+1.25)}\right]} \\
& \lim _{s \rightarrow 0} s E(s)=0.1 \\
& \frac{-2.2}{1+2.2 k}=0.1 \\
& -2.2=0.1+0.22 k \\
& \frac{-2.2-0.1}{0.22}=k \\
& \frac{-2.3}{0.22}=k=-10.45
\end{aligned}
$$

page GATE 2021 [Forenoon Session]
 35

$$
|k|=10.45
$$

Hence, the correct answer is 10.45 .
Question 35
In the figure shown, self-impedances of the two transmission lines are $1.5 j$ pu each and $Z_{m}=0.5 j \mathrm{pu}$ is the mutual impedance. Bus voltages shown in the figure are in pu. Given that $\delta>0$, the maximum steady state real power that can be transferred in pu from bus-1 to bus-2 is

(A) $|E||V|$
(B) $\frac{|E||V|}{2}$
(C) $2|E||V|$
(D) $\frac{3|E||V|}{2}$

Ans. A
Sol. Given :

Equivalent inductance for a parallel magnetic circuit with mutual inductance M is given by,

$$
L_{e q}=\frac{L_{1} L_{2}-M^{2}}{L_{1}+L_{2}-2 M}
$$

$$
j \omega L_{e q}=\frac{(j \omega)^{2}\left[L_{1} L_{2}-M^{2}\right]}{j \omega\left[L_{1}+L_{2}-2 M\right]}
$$

$$
j \omega L_{e q}=\frac{\left(j \omega L_{1}\right)\left(j \omega L_{2}\right)-(j \omega M)^{2}}{j \omega L_{1}+j \omega L_{2}-2(j \omega M)}
$$

$$
j \omega L_{e q}=\frac{1.5 \times 1.5-(0.5)^{2}}{1.5+1.5-2 \times 0.5}
$$

$$
j \omega L_{e q}=j 1
$$

So, $j X_{e q}=j 1 \Omega$

So, maximum power transfered in steady state

$$
=\frac{|E||V|}{1}=|E||V|=|E V|
$$

Hence, the correct option is (A).

Question 36

In the circuit shown, the input V_{i} is a sinusoidal AC voltage having an rms value of $230 \mathrm{~V} \pm 20 \%$. The worst case peak-inverse voltage seen across any diode is \qquad V. (Round off to 2 decimal places)

Ans. 390.266

Sol. Given :
Supply voltage, $V_{s_{(m \mathrm{~ms})}}=(230 \pm 20 \%) \mathrm{V}$

$$
\begin{aligned}
& \Delta V= \pm \frac{20 \times 230}{100}= \pm 46 \\
& V_{s_{(m s)}}=(230 \pm 46) \mathrm{V} \\
& V_{s_{(m s s)}}=(184 \text { to } 276) \mathrm{V}
\end{aligned}
$$

Supply voltage will vary in between $184 \sqrt{2} \sin \omega t$ to $276 \sqrt{2} \sin \omega t$.
In given converter, the discharging time of capacitor will be 4τ and capacitor will charge for every less time than $\frac{\pi}{2 \omega} \sec$.

Let us assume, in the range of $0-\pi / 2 \quad D_{1} D_{2}$ are ON , so $D_{3} D_{3}$ will be OFF.
Mode I : $0<\omega t<\pi$
Diode D_{1}, D_{2} will be forward biased and diode D_{3}, D_{4} will be reversed biased.
Mode II : $\pi<\omega t<2 \pi$
Diode D_{3}, D_{4} will be forward biased and diode D_{1}, D_{2} will be reversed biased.
From mode-I,

Applying KVL in the above circuit,

page GATE 2021 [Forenoon Session]
 37

$$
\begin{aligned}
& V_{m} \sin \omega t-V_{D_{3}}=0 \\
& V_{D_{3}}=V_{m} \sin \omega t
\end{aligned}
$$

The peak inverse voltage across each diode is given by,

$$
\left.V_{D}\right|_{\max }=276 \sqrt{2} \mathrm{~V}=390.32 \mathrm{~V}
$$

Hence, the correct answer is 390.32 .

Question 37

Power Electronics (2M)

Consider the boost converter shown. Switch Q is operating at 25 kHz with a duty cycle of 0.6 . Assume the diode and switch to be ideal. Under steady-state condition, the average resistance $R_{i n}$ as seen by the source is \qquad Ω. (Round off to 2 decimal places)

Ans. 1.6
Sol. Given : Boost convertor
(i) Switching frequency, $f_{s}=25 \mathrm{kHz}$
(ii) Duty cycle, $\delta=0.6$

Method 1 :

As the switches are lossless,

Average value of load current is given by,

$$
i_{0(\text { avg })}=\frac{V_{0}}{R}=\frac{37.5}{10}=3.75 \mathrm{Amp}
$$

Average value of source current,

$$
i_{s(\text { avg })}=i_{L(\text { avg })}=\frac{10}{(1-\delta)}=9.375 \mathrm{Amp}
$$

Ripple component of inductor current is given by,

$$
\Delta i_{L}=\frac{\delta V_{s}}{f L}=\frac{0.6 \times 15}{25 \mathrm{k} \times 1 \mathrm{~m}}=0.36 \mathrm{Amp}
$$

\therefore Minimum current through inductor,

$$
\begin{aligned}
& i_{L_{\min }}=i_{L_{(a v y)}}-\frac{\Delta i_{L}}{2} \\
& i_{L_{\min }}=9.375-\frac{0.36}{2}=9.195 \mathrm{Amp}
\end{aligned}
$$

As $i_{L_{\text {min }}}$ is not zero, hence inductor current will be continuous
Input resistance seen from supply side is given by,

$$
R_{i n}=\frac{V_{s}}{i_{s}}=\frac{15}{9.375}=1.6 \Omega
$$

Method 2 :

$$
\begin{aligned}
& R_{i n}=\frac{V_{s}}{i_{s}}=\frac{\frac{V_{0}}{\frac{(1-\delta)}{i_{0}}}}{\frac{(1-\delta)}{}}=\left(\frac{V_{0}}{i_{0}}\right)(1-\delta)^{2} \\
& R_{i n}=R_{0}(1-\delta)^{2}=10(1-0.6)^{2}=1.6 \Omega
\end{aligned}
$$

Hence, the correct answer is 1.6.

Question 38

Analog Electronics (2M)
A CMOS Schmitt-trigger inverter has a low output level of 0 V and a high output level of 5 V . It has input thresholds of 1.6 V and 2.4 V . The input capacitance and output resistance of the Schmitt trigger are negligible. The frequency of the oscillator shown in the figure is \qquad Hz. (Round off to 2 decimal places)

Ans. 3158.12

Sol. Given :

(i) $V_{L T}=1.6 \mathrm{~V}$
(ii) $V_{U T}=2.4 \mathrm{~V}$
(iii) $+V_{\text {sat }}=5 \mathrm{~V}$
(iv) $-V_{\text {sat }}=0 \mathrm{~V}$

PAGE

Total time period is given by,

$$
T=T_{1}+T_{2}
$$

Where,

$$
\begin{aligned}
& T_{1} \text { is OFF time } \\
& T_{2} \text { is ON time } \\
& f=\frac{1}{T}
\end{aligned}
$$

Calculation of \boldsymbol{T}_{1} :

$$
\begin{aligned}
& V_{c}\left(0^{-}\right)=2.4 \mathrm{~V} \\
& V_{c}(\infty)=0 \mathrm{~V} \\
& V_{c}(t)=0+(2.4-0) e^{-t / R C}
\end{aligned}
$$

At $t=T_{1} ; V_{c}=1.6 \mathrm{~V}$

$$
\begin{aligned}
& 1.6=2.4 e^{-T_{1} / R C} \\
& e^{-T_{1} / R C}=\frac{1.6}{2.4} \\
& e^{T_{1} / R C}=\frac{24}{16}
\end{aligned}
$$

$$
T_{1}=R C \ln (1.5)
$$

Calculation of $\boldsymbol{T}_{\mathbf{2}}$:

$$
\begin{aligned}
& V_{c}\left(0^{-}\right)=1.6 \mathrm{~V} \\
& V_{c}(\infty)=5 \mathrm{~V}
\end{aligned}
$$

The charging equation of the first order RC circuit is given by

$$
V_{c}(t)=5+(16.5) e^{-t / R C}
$$

At $t=T_{2}$
$V_{c}=2.4 \mathrm{~V}$

page GATE 2021 [Forenoon Session]
 40

$2.4=5+(16.5) e^{-T_{2} / R C}$
$e^{-T_{2} / R C}=\frac{34}{26}$
$T_{2}=R C \log (1.307)$

Calculation of \boldsymbol{T} :

$$
\begin{aligned}
& \boldsymbol{T}=\boldsymbol{T}_{1}+\boldsymbol{T}_{\mathbf{2}} \\
& T=R C \ln (1.5 \times 1.307) \\
& T=10 \times 10^{3} \times 47 \times 10^{-9} \times 0.673 \\
& T=316.644 \mu \mathrm{sec} \\
& f=\frac{1}{T} \\
& f=3158.12 \mathrm{~Hz}
\end{aligned}
$$

Hence, the correct answer is 3158.12 .

Question 39

Analog Electronics (2M)
The waveform shown in solid line is obtained by clipping a full-wave rectified sinusoid (shown dashed). The ratio of the rms value of the full-wave rectified waveform to the rms value of the clipped waveform is \qquad . (Round off to 2 decimal places,)

Ans. 1.21
Sol. Given waveform,

RMS value of above signal given by,

$$
V_{r m s}=\left[\frac{1}{\pi} \int_{0}^{\pi}(\sin \omega t)^{2} d \omega t\right]^{\frac{1}{2}}=\left[\frac{V_{m}^{2}}{\pi} \int_{0}^{\pi} \frac{(1-\cos 2 \omega t)}{2} d \omega t\right]^{\frac{1}{2}}
$$

$$
=V_{r u s}\left[\frac{1}{2 \pi}\left((\pi-0)-\left.\frac{\sin 2 \omega t}{2}\right|_{0} ^{\pi}\right)\right]^{\frac{1}{2}}
$$

$$
=\frac{V_{m}}{\sqrt{2}}=0.707 V_{m}
$$

RMS value of clipped signal is given by,

$$
\begin{aligned}
& =\left[\frac{1}{\pi} \int_{0}^{\frac{\pi}{4}}\left(V_{m} \sin \omega t\right)^{2} d \omega t+\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}}\left(0.707 V_{m}\right)^{2} d \omega t+\int_{\frac{3 \pi}{4}}^{\pi}\left(V_{m} \sin \omega t\right)^{2} d \omega t\right]^{\frac{1}{2}} \\
& =\left\{\frac{1}{\pi}\left[V_{m}^{2} \int_{0}^{\frac{\pi}{4}}\left(\frac{1-\cos 2 \omega t}{2}\right)+0.707^{2} V_{m}^{2} \times\left(\frac{3 \pi}{4}-\frac{\pi}{4}\right)\right]+V_{m}^{2} \int_{\frac{3 \pi}{4}}^{\pi}\left(\frac{1-\cos 2 \pi \omega t}{2}\right)\right\}^{\frac{1}{2}} \\
& =\frac{V_{m}^{2}}{2 \pi}\left[\frac{\pi}{4}-\left(\frac{\sin 2 \times \frac{\pi}{4}-\sin 2 \times 0}{2}\right)+\left(\frac{3 \pi}{4}-\frac{\pi}{4}\right)+\left(\pi-\frac{3 \pi}{4}\right)-\sin 2 \pi-\sin 2 \times \frac{3 \pi}{4}\right]^{\frac{1}{2}} \\
& =\frac{V_{m}^{2}}{2 \pi}\left[\frac{\pi}{4}-\frac{1}{2}+\frac{\pi}{2}+\frac{\pi}{4}-\frac{1}{2}\right]^{\frac{1}{2}}=V_{m}\left(\frac{\pi-1}{2 \pi}\right)^{\frac{1}{2}}=0.5839 V_{m} \\
& \frac{V_{\text {(rmss }}}{V_{\text {(rms) }}} \operatorname{sinewave} \\
& \operatorname{clipped} \operatorname{wave}=\frac{0.707 V_{m}}{0.5839 V_{m}}=1.21
\end{aligned}
$$

Hence, the correct answer is 1.21 .

Question 40

Power Electronics (2M)

A single-phase full bridge inverter fed by a 325 V DC produces a symmetric quasi-square waveform across " $a b$ " as shown. To achieve a modulation index of 0.8 , the angle θ expressed in degrees should be \qquad . (Round off to 2 decimal places)

(Modulation index is defined as the ratio of the peak of the fundamental component of $V_{d b}$ to the applied DC value)

Ans. 51.07
Sol. Fourier series expression for single pulse width modulation is given by,

$$
V_{0}(n t)=\sum_{n=1,3,5}^{\infty} \frac{4 V_{s}}{n \pi} \sin (n d) \sin \left(\frac{n \pi}{2}\right) \sin n \omega t
$$

Fundamental component of single pulse width modulation is given by,

$$
\begin{equation*}
V_{0_{1}}(t)=\frac{4 V_{s}}{\pi} \sin (d) \tag{i}
\end{equation*}
$$

Peak amplitude of fundamental component of single pulse with a modulation index of 0.8 is

$$
\begin{align*}
& V_{0_{1}}=m V_{s} \\
& V_{0_{1}}=0.8 V_{s} \tag{ii}
\end{align*}
$$

Comparing equation (i) and (ii),

$$
\begin{aligned}
& \frac{4 V_{s}}{\pi} \sin (d)=0.8 V_{s} \\
& \sin d=0.62832
\end{aligned}
$$

Therefore,

$$
\theta=\left(\frac{\pi}{2}-d\right)=51.07^{0}
$$

Hence, the correct answer is 51.07.

Question 41

Consider the buck-boost converter shown. Switch Q is operating at 25 kHz and 0.75 duty-cycle. Assume diode and switch to be ideal. Under steady-state condition, the average current flowing through the inductor is \qquad A.

Ans. 24
Sol. Given : Buck-boost converter
(i) Switching frequency, $f_{s}=25 \mathrm{kHZ}$
(ii) Duty cycle, $\delta=0.75$

Method 1 :

Fig. Inductor current and source current waveform
Average value of inductor current is given by,

$$
\begin{aligned}
& i_{L(a v g)}=\frac{\frac{1}{2} \Delta i_{L} T+i_{L \min } T}{T} \\
& i_{L(a v g)}=\left(\frac{i_{L \max }+i_{L \min }}{2}\right)
\end{aligned}
$$

Average value of source current is given by,

$$
\begin{array}{ll}
i_{s(\mathrm{avg})} & =\frac{\frac{1}{2} \Delta i_{L} \delta T+i_{L \min } \delta T}{T} \\
i_{s(\mathrm{avg})}=\frac{1}{2}\left(i_{L \max }+i_{L \min }\right) \delta & {\left[i_{s(\text { avg })}=\delta i_{L(\text { avg })}\right]}
\end{array}
$$

Output voltage for buck-boost convertor is given by,

$$
\begin{aligned}
& V_{0}=\frac{\delta V_{s}}{(1-\delta)}=\frac{0.75 \times 20}{0.25}=60 \mathrm{~V} \\
& i_{0(\text { avg })}=\frac{V_{0}}{R}=6 \mathrm{~A}
\end{aligned}
$$

As the switches are lossless,

$$
\begin{array}{ll}
& P_{i n}=P_{\text {out }} \\
& V_{s} i_{s}=V_{0} i_{0} \\
& \frac{V_{0}}{V_{s}}=\frac{i_{s}}{i_{0}}=\frac{\delta}{(1-\delta)} \\
\therefore \quad & i_{s(a v g)}=\frac{i_{0} \delta}{(1-\delta)}=\frac{6 \times 0.75}{0.25}=18 \mathrm{~A}
\end{array}
$$

Average value of inductor current,

PAGE

$$
i_{L(a v g)}=\frac{i_{s(a v g)}}{\delta}=\frac{18}{0.75}=24 \mathrm{~A}
$$

Ripple in inductor current is given by,

$$
\Delta i_{L}=\frac{\delta V_{s}}{f L}=\frac{0.75 \times 20}{25 \mathrm{k} \times 1 \mathrm{~m}}=0.6 \mathrm{~A}
$$

Minimum value of inductor current will be,

$$
i_{L \min }=i_{L(\text { avg })}-\frac{\Delta i_{L}}{2}=24-\frac{0.6}{2}=23.7 \mathrm{Amp}
$$

As $i_{L(\min)}$ is greater than zero, so i_{L} will be continuous.
So,

$$
i_{L(\text { avg })}=24 \mathrm{Amp}
$$

Hence, the correct answer is 24 .

Method 2 :

Fig. inductor current and Source current waveform
Average value of switch current is given by,

$$
\begin{aligned}
& I_{S W(\text { avg })}=\delta \times I_{L \text { (avg) }} \\
& I_{L(\text { avg })}=\frac{I_{S W(\text { avg })}}{\delta}
\end{aligned}
$$

Average value of inductor current is given by,
As the switches are lossless,

$$
\begin{aligned}
& P_{\text {in }}=P_{\text {out }} \\
& V_{s} i_{s}=V_{0} i_{0} \\
& \left.i_{s}=\frac{i_{0}}{(1-\delta)} \quad \text { (For Boost Converter, } I_{L \text { (avg) }}=i_{s(\text { avg })}\right) \\
& I_{L(\text { avg })}=\frac{I_{0}}{1-\delta}=\frac{20}{1-0.75}=24 \mathrm{~A}
\end{aligned}
$$

Hence, the correct answer is 24 .

Suppose the circles $x^{2}+y^{2}=1$ and $(x-1)^{2}+(y-1)^{2}=r^{2}$ intersect each other orthogonally at the point (u, v). Then $u+v=$ \qquad .

Ans. 1
Sol. Given : $x^{2}+y^{2}=1$
and $\quad(x-1)^{2}+(y-1)^{2}=r^{2}$
Differentiating equation (i) w.r.t. x,

$$
\begin{aligned}
& 2 x+2 y \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{-x}{y}
\end{aligned}
$$

Differentiating equation (ii) w.r.t x,

$$
\begin{aligned}
& 2(x-1)+2(y-1) \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{-(x-1)}{(y-1)}
\end{aligned}
$$

Let,

$$
\begin{aligned}
& M_{1}=\frac{d y}{d x}=\frac{-x}{y} \\
& M_{2}=\frac{d y}{d x}=\frac{-(x-1)}{(y-1)}
\end{aligned}
$$

Now,

$$
M_{1} \times M_{2}=-\left.1\right|_{\text {at }(x, y)=(u, v)}
$$

$$
\left(\frac{-u}{v}\right)\left(\frac{1-u}{v-1}\right)=-1
$$

$$
\frac{u-u^{2}}{v^{2}-v}=1
$$

$$
u-u^{2}=v^{2}-v
$$

$$
u+v=v^{2}+u^{2}
$$

$$
\left\{\because x^{2}+y^{2}=1 \Rightarrow u^{2}+v^{2}=1\right\}
$$

$$
u+v=1
$$

Hence, the correct answer is 1 .

Question 43

Consider a power system consisting of N number of buses. Buses in this power system are categorized into slack bus. $P V$ buses and $P Q$ buses for load flow study. The number of $P Q$ buses is N_{L}. The balanced Newton-Raphson method is used to carry out load flow study in polar form H, S, M and R are sub-matrices of the Jacobian matrix J as shown below:

$$
\left[\begin{array}{l}
\Delta P \\
\Delta Q
\end{array}\right]=J\left[\begin{array}{l}
\Delta \delta \\
\Delta \gamma
\end{array}\right] \text {, where } J=\left[\begin{array}{ll}
H & S \\
M & R
\end{array}\right]
$$

The dimension of the sub matrix M is
(A) $N_{L} \times(N-1)$
(B) $(N-1) \times\left(N-1-N_{L}\right)$
(C) $N_{L} \times\left(N-1+N_{L}\right)$
(D) $(N-1) \times\left(N-1+N_{L}\right)$

Ans. A
Sol. Jacobian matrix is given by,

$$
J=\left[\begin{array}{ll}
\frac{\partial P}{\partial \delta} & \frac{\partial P}{\partial \gamma} \\
\frac{\partial Q}{\partial \delta} & \frac{\partial Q}{\partial \gamma}
\end{array}\right]
$$

Comparing it with Jacobian matrix given in question

$$
J=\left[\begin{array}{ll}
H & S \\
M & R
\end{array}\right]
$$

So,

$$
\begin{aligned}
& M=\frac{\partial Q}{\partial \delta} \\
& Q \rightarrow \text { Known } \\
& \delta \rightarrow \text { Unknown }
\end{aligned}
$$

So , size of sub-Jacobian matrix M is given by,

$$
=N_{L} \times(N-1)
$$

Hence, the correct option is (A).

Question 44

In the open interval $(0,1)$, the polynomial $p(x)=x^{4}-4 x^{3}+2$ has
(A) Two real roots
(B) One real root
(C) Three real roots
(D) No real roots

Ans. B
Sol. Given : $p(x)=x^{4}-4 x^{3}+2$

$$
\begin{aligned}
& p(0)=0-0+2=2 \\
& p(1)=1-4+2=-1 \\
& p(-1)=1+4+2=7
\end{aligned}
$$

Since, $p(x)$ intersect x-axis, one time in the interval $(0,1)$.

Therefore, $p(x)$ has 1 real root in $(0,1)$.
Hence, the correct option is (B).

Question 45

Electromagnetic Theory (2M)

One Coulomb of point charge moving with a uniform velocity $10 \hat{x} \mathrm{~m} / \mathrm{s}$ enters the region $x \geq 0$ having a magnetic flux density $\vec{B}=(10 y \hat{x}+10 x \hat{y}+10 \hat{z})$ T. The magnitude of force on the charge at $x=0^{+}$is
\qquad N . (\hat{x}, \hat{y} and \hat{z} are unit vectors along x -axis, y -axis and z -axis respectively)
Ans. 100
Sol. Given : Magnetic flux density, $\vec{B}=(10 y \hat{x}+10 x \hat{y}+10 \hat{z}) \mathrm{T}$
Velocity, $\vec{V}=10 \hat{x} \mathrm{~m} / \mathrm{s}$
Force, $\vec{F}=(\vec{V} \times \vec{B})$

$$
\begin{aligned}
& \vec{F}=(10 \hat{x} \times(10 y \hat{x}+10 x \hat{y}+10 \hat{z})) \\
& |\vec{F}|=|-100|=100 \mathrm{~N}
\end{aligned}
$$

Hence, the correct answer is 100 .

Question 46

Signals \& Systems (1M)

Two discrete-time linear time-invariant systems with impulse responses $h_{1}[n]=\delta[n-1]+\delta[n+1]$ and $h_{2}[n]=\delta[n]+\delta[n-1]$ are connected in cascade. Where $\delta[n]$ in the Kronecker delta. The impulse response of the cascade system
(A) $\delta[n-2]+\delta[n+1]$
(B) $\delta[n-1] \delta[n]+\delta[n+1] \delta[n-1]$
(C) $\delta[n-2]+\delta[n-1]+\delta[n]+\delta[n+1]$
(D) $\delta[n] \delta[n-1]+\delta[n-2] \delta[n+1]$

Ans. C
Sol. Given : The two systems being cascaded are having impulse responses

$$
\begin{aligned}
& h_{1}[n]=\delta[n-1]+\delta[n+1] \\
& h_{2}[n]=\delta[n]+\delta[n+1]
\end{aligned}
$$

Impulse response of the cascaded equivalent system is given as

$$
\begin{aligned}
& x[n] \longrightarrow h[n]=h_{1}[n]^{*} h_{2}[n] \\
& h[n]=h_{1}[n]^{*} h_{2}[n]=\{\delta[n-1]+\delta[n+1]\} *\{\delta[n]+\delta[n-1]\} \\
& h[n]=\delta[n-2]+\delta[n-1]+\delta[n]+\delta[n+1] \\
& h[n]=\delta[n-1]+\delta[n]+\delta[n-1]+\delta[n-2]
\end{aligned}
$$

Hence, the correct option is (C).

Question 47

The state space representation of a first-order system is given as

$$
\begin{aligned}
& \dot{x}=-x+u \\
& y=x
\end{aligned}
$$

Where, x is the state variable, u is the control input and y is the controlled output. Let $u=-k x$ be the control law, where K is the controller gain. To place a closed loop pole at -2 , the value of k is \qquad .
Ans. 1
Sol. Given : $\dot{x}=-x+u$
$y=x$
$\dot{x}=-x+u$
Let $u=-K x$
$\dot{x}=-x-K x$

Method 1 :

$$
\begin{array}{ll}
& \dot{x}=x(-1-K) \\
& |s I-A|=0 \\
& |s I-(-1-K)|=0 \\
\because & s+1+K=0 \\
\because & s=-2 \\
& -2+1+K=0 \\
& K=1
\end{array}
$$

Hence, the correct answer is $K=1$.

Method 2 :

Let

$$
\begin{aligned}
& \dot{x}=-x+u \\
& y=x
\end{aligned}
$$

$$
\begin{aligned}
& u=-K x \\
& s x(s)=-x(s)-k x(s) \\
& y(s)=x(s) \\
& s x(s)+x(s)+K x(s)=1 \\
& x(s)[s+1+K]=1
\end{aligned}
$$

Characteristic equation $=[s+1+K]$ to place close loop pole at -2

$$
\begin{aligned}
& 1+K=2 \\
& K=1
\end{aligned}
$$

Hence, the correct answer is 1 .
Question 48
Inductance is measured by,
(A) Schering bridge
(B) Maxwell bridge
(C) Kelvin bridge
(D) Wien bridge

Ans. B
Sol. (i) Schering bridge is used for the measurement of capacitance.
(ii) Wien bridge is used for the measurement of frequency.
(iii) Kelvin bridge is used for the measurement of resistance.
(iv) Maxwell bridge is used for the measurement of inductance.

Hence, the correct option is (B).

A signal generator having a source resistance of 50Ω is set to generate a 1 kHz sinewave. Open circuit terminal voltage is 10 V peak-to-peak. Connecting a capacitor across the terminals reduces the voltage to 8 V peak-to-peak. The value of this capacitor is \qquad $\mu \mathrm{F}$. (Round off to 2 decimal places)
Ans. 2.38
Sol. Given :
(i) $V_{s}=10$ volts peak-to-peak
(ii) $R_{s}=50 \Omega$
(iii) $f=1000 \mathrm{~Hz}$

Case 1 : Under open circuited conduction

$$
\therefore \quad V_{0}=5 \sin \left(2 \pi \times 10^{3} t\right)
$$

Case 2 : When the capacitor is connected across the terminals, voltage across terminals reduces to 8 volts peak to peak.

Applying voltage division rule, voltage across capacitor is given by,

$$
\begin{aligned}
& V_{C}=\frac{\frac{1}{j \omega C}}{50+\frac{1}{j \omega C}} \times V_{i n}=\frac{V_{i n}}{1+j \omega C \times 50} \\
& 4=\frac{5}{1+j \omega C \times 50} \\
& 0.8=\frac{1}{\sqrt{1+R^{2} \omega^{2} C^{2}}} \\
& 0.8=\frac{1}{\sqrt{1+R^{2} \times\left(2 \pi \times 10^{3}\right)^{2} C^{2}}} \\
& C=2.38 \mu \mathrm{~F}
\end{aligned}
$$

$$
4=\frac{5}{1+j \omega C \times 50} \quad \square \quad Q
$$

Hence, the correct answer is 2.38 .

Question 50

Network Theory (1M)
In the given eireuit, for voltage V_{y} to be zero, the value of β should be \qquad (Round off to 2 decimal places)

PAGE 50

Ans. - 3.25
Sol. Given circuit is as shown below,

Applying nodal analysis at node V_{x},

$$
\begin{aligned}
& \left.\frac{V_{x}}{4}+\frac{V_{x}-6}{1}+\frac{V_{x}-0}{2}=0 \quad \text { (From the given condition, } V_{y}=0\right) \\
& \frac{3 V_{x}}{4}+V_{x}=6 \\
& 7 V_{x}=24 \\
& V_{x}=\frac{24}{7}
\end{aligned}
$$

Applying nodal analysis at node V_{y},

$$
\begin{aligned}
& 2=\frac{0-V_{x}}{2}+\frac{0-\beta V_{x}}{3} \\
& 12=-3 V_{x}-2 \beta V_{x} \\
& 12=-(3+2 \beta) V_{x} \\
& 12=-(3+2 \beta) \frac{24}{7} \\
& \beta=-3.25
\end{aligned}
$$

$$
12=-(3+2 \beta) V_{x} \square \square \square
$$

Hence, the correct answer is -3.25 .

Question 51

Network Theory (1M)
For the network shown, the equivalent Thevenin voltage and Thevenin impedance as seen across terminals ' $a b$ ' is

(A) 10 V in series with 12Ω
(B) 65 V in series with 15Ω
(C) 50 V in series with 2Ω
(D) 35 V in series with 2Ω

Ans. B
Sol. Calculation of $V_{t h}$:

From the circuit diagram,

$$
\begin{aligned}
& i=5 \mathrm{~A} \\
& V_{t h}=3 i+10 i=13 i \\
& V_{t h}=65 \mathrm{~V}
\end{aligned}
$$

Calculation of $\boldsymbol{R}_{t h}$:

From the circuit diagram,

$$
\begin{aligned}
& i=I_{d c} \\
& V_{d c}=2 I_{d c}+3 i+10 i \\
& V_{d c}=2 I_{d c}+3 I_{d c}+10 I_{d c} \\
& \frac{V_{d c}}{I_{d c}}=15 \Omega
\end{aligned}
$$

Hence, the correct option is (B).

A 100 Hz square wave, switching between 0 V and 5 V , is applied to a CR high-pass filter circuit as shown. The output voltage waveform across the resistor is 6.2 V peak-to-peak. If the resistance R is 820Ω, then the value C is \qquad $\mu \mathrm{F}$. (Round off to 2 decimal places.)

Ans. 12.75
Sol. Given :
(i) Square waveform of 0 to 5 V amplitude.
(ii) Frequency, $f=100 \mathrm{~Hz}$
(iii) Resistance, $R=820 \Omega$
(iv) Peak-to-peak voltage across resistance, $R=6.2 \mathrm{~V}$

From 0 to 5 msec , capacitor charge exponentially

$$
\begin{array}{ll}
\therefore & V_{C}(\infty)=5 \mathrm{~V} \\
& V_{C}(0)=0 \mathrm{~V} \quad \text { (As capacitor is initially discharged) }
\end{array}
$$

Charging equation of first order RC circuit is given by,

$$
\begin{aligned}
& \therefore \quad V_{C}(t)=V_{C}(\infty)+\left[V_{C}\left(0^{+}\right)-V_{C}(\infty)\right] e^{-t / \tau} \\
& V_{C}(t)=5+(0-5) e^{-t / \tau} \\
& \\
& V_{C}(t)=5\left(1-e^{-t / \tau}\right)
\end{aligned}
$$

$$
V_{C}(t)=5+(0-5) e^{-t / \tau}
$$

From $5 \mathbf{~ m s e c}$ to $10 \mathbf{~ m s e c}$, capacitor discharges through resistance.

As the voltage across resistance varies between 3.1 V to $-3.1 \mathrm{~V}(6.2 \mathrm{~V}$ peak to peak)

PAGE
 GATE 2021 [Forenoon Session]
 53

Voltage across resistance is given by,

$$
\begin{aligned}
& V_{R}(t)=V_{S}-V_{C}(\tau)=5-\left[5\left(1-e^{-t / \tau}\right)\right]=5 e^{-t / \tau} \\
& V_{R}(t)=-3.1 \text { at } t=5 \mathrm{msec} \\
& -3.1=5 e^{\frac{-5 \times 10^{-3}}{820 \times c}} \\
& C=12.75 \mu \mathrm{~F}
\end{aligned}
$$

Hence, the value of C is $\mathbf{1 2 . 7 5} \mu \mathbf{F}$.

Question 53

Suppose I_{A}, I_{B} and I_{C} are a set of unbalanced current phasors in a three-phase system. The phase-B zero-sequence current $I_{B 0}=0.1 \angle 0^{\circ}$ p.u. If phase-A current $I_{A}=1.1 \angle 0^{\circ}$ p.u and phase- C current $I_{C}=\left(1 \angle 120^{\circ}+0.1\right)$ p.u., then I_{B} in p.u is
(A) $1 \angle 240^{\circ}-0.1 \angle 0^{\circ}$
(B) $1.1 \angle 240^{\circ}-0.1 \angle 0^{\circ}$
(C) $1.1 \angle-120^{\circ}+0.1 \angle 0^{\circ}$
(D) $1 \angle-120^{\circ}+0.1 \angle 0^{\circ}$

Ans. D
Sol. Given : $I_{B 0}=0.1 \angle 0^{\circ}$

$$
\begin{aligned}
& I_{A}=1.1 \angle 0^{\circ} \\
& I_{C}=\left(1 \angle 120^{\circ}+0.1\right) \mathrm{pu} \\
& I_{B}=?
\end{aligned}
$$

Breaking line currents into sequence currents

$$
I_{B}=I_{B 0}+I_{B 1}+I_{B 2}
$$

$$
\begin{aligned}
& I_{B}=0.1 \angle 0^{0}+I_{B 1}+I_{B 2} \\
& I_{A}=I_{A 0}+I_{A 1}+I_{A 2}
\end{aligned}
$$

page GATE 2021 [Forenoon Session] 54

$$
\begin{align*}
& 1.1 \angle 0^{\circ}=0.1 \angle 0^{0}+I_{B 1} \angle 120^{\circ}+I_{B 2} \angle 240^{\circ} \tag{i}\\
& I_{C}=I_{C 0}+I_{C 1}+I_{C 2} \\
& 1 \angle 120^{\circ}+0.1=0.1 \angle 0^{\circ}+I_{B 1} \angle 240^{\circ}+I_{B 2} \angle 120^{\circ} \\
& 1 \angle 120^{\circ}=I_{B 1} \angle 240^{\circ}+I_{B 2} \angle 120^{\circ} \tag{ii}
\end{align*}
$$

From equation (i),

$$
\begin{equation*}
1 \angle 0^{\circ}=I_{B 1} \angle 120^{\circ}+I_{B 2} \angle 240^{\circ} \tag{iii}
\end{equation*}
$$

Adding equation (ii) and (iii),

$$
\begin{aligned}
& 1 \angle 0^{0}+1 \angle 120^{\circ}=I_{B 1}\left(\angle 120^{\circ}+\angle 240^{\circ}\right)+I_{B 2}\left(\angle 120^{\circ}+\angle 240^{\circ}\right) \\
& \left(I_{B 1}+I_{B 2}\right) \angle 180^{\circ}=1 \angle 0^{0}+1 \angle 120^{\circ} \\
& I_{B 1}+I_{B 2}=1 \angle-180^{\circ}+1 \angle-60^{\circ}
\end{aligned}
$$

So,

$$
\begin{aligned}
& I_{B}=I_{B 0}+I_{B 1}+I_{B 2} \\
& I_{B}=0.1 \angle 0^{\circ}+1 \angle-180^{\circ}+1 \angle-60^{\circ} \\
& I_{B}=0.1 \angle 0^{\circ}+1 \angle-120^{\circ}
\end{aligned}
$$

Hence, the correct option is (D).

Question 54

Electrical Machine (2M)

An air-core radio-frequency transformer as shown has a primary winding and a secondary winding. The mutual inductance M between the windings of the transformer is \qquad $\mu \mathrm{H}$. (Round off to 2 decimal places)

Ans. 51.12
Sol. Given circuit diagram is as shown below,

Voltage across secondary winding of air core transformer is given by,

$$
\begin{aligned}
& V_{2}=\omega M I_{1} \\
& V_{2}=(2 \pi f) M I_{1}
\end{aligned}
$$

From above circuit diagram, current of primary of air core transformer I_{1} is given by,

$$
I_{1}=\frac{5}{22} \mathrm{~A}
$$

Mutual inductance, $M=\frac{V_{2}}{2 \pi f \times I_{1}}$

$$
M=\frac{7.3}{2 \pi \times 10^{5} \times \frac{5}{22}}=51.12 \mu \mathrm{H}
$$

Hence, the correct answer is 51.12.

Question 55

Electromagnetic Theory (2M)

Consider a large parallel plate capacitor. The gap d between the two plates is filled entirely with a dielectric slab of relative permittivity 5 . The plates are initially charged to a potential difference of V volts and then disconnected from the source. If the dielectric slab is pulled out completely, then the ratio of the new electric field E_{2} in the gap to the original electric field E_{1} is \qquad .

Ans. 5
Sol. Large parallel plate capacitor indicates, fringing effect can be neglected and had E-field is same as infinite surface charge.

Initial case :

page GATE 2021 [Forenoon Session] 56

$$
\begin{aligned}
& E_{\text {old }}=\frac{V}{l}=\frac{\rho}{\varepsilon_{0} \times 5} \\
& \rho_{s_{\text {old }}}=\frac{V}{l} \times 5 \varepsilon_{0}=E_{\text {old }} \times 5 \varepsilon_{0}
\end{aligned}
$$

After disconnection charge will be conserved.

$$
\begin{aligned}
& E_{\text {new }}=\frac{\rho_{s_{\text {old }}}}{\varepsilon_{0}}=\frac{\frac{V}{l} \times 5 \varepsilon_{0}}{\varepsilon_{0}} \\
& E_{\text {new }}=5 E_{\text {old }} \\
& \frac{E_{2}}{E_{1}}=5
\end{aligned}
$$

Hence, the correct answer is 5 .

General Aptitude

Question 56

General Aptitude (1M)

For a regular polygon having 10 sides, the interior angle between the sides of the polygon, in degrees, is
(A) 396
(B) 324
(C) 216
(D) 144

Ans. D
Sol. Given : Sides of polygon, $n=10$
Since, interior angle between the sides of the polygon

$$
\begin{aligned}
& =\frac{(n-2)}{n} \times 180^{\circ} \\
& =\frac{(10-2)}{10} \times 180^{\circ}=144^{\circ}
\end{aligned}
$$

Hence, the correct option is (D).

Question 57

General Aptitude (2M)
Seven Cars P, Q, R, S, T, U and V are parked in a row not necessarily in that order. The cars T and U should be parked next to each other. The cars S and V also should be parked next to each other, whereas P and Q can't be parked next to each other. Q and S must be parked next to each other. R is parked to the immediate right of V . T is parked to the left of U .

Based on the above statements, the only incorrect option given below is
(A) There are two cars parked in between Q and V .
(B) Q and R are not parked together.
(C) V is the only car parked in between S and R .
(D) Car P is parked at extreme end.

Ans. A
Sol. Step 1. Make proper drafting of given info.

Step 2. Combine drafting :

Only one car is in between Q and V .
Hence, the correct option is (A).

Question 58

General Aptitude (1M)
The people \qquad were at the demonstration were from all sections of society.
(A) whose
(B) which
(C) who
(D) whom

Ans. C
Sol. Since who refers to the subject.
Hence, the correct option is (C).
Question 59

General Aptitude (1M)

Oasis is to sand as island is to \qquad .
Which one of the following options maintains a similar logical relation in the above sentence?
(A) Stone
(B) Land
(C) Water
(D) Mountain

Ans. C
Sol. Oasis is a fertile land surrounded by sand.
Island is a fertile land surrounded by water.
Hence, the correct option is (C).
Question 60
General Aptitude (2M)
The number of student passing or failing in an exam for a particular subject are presented in the bar chart below. Students who pass the exam cannot appear for the exam again. Students who fails the exam in the first attempt must appear for the exam in the following year. Students always pass the exam in their second attempt. The numbers of students who took the exam for the first time in the year $2^{\text {nd }}$ the year 3 respectively, are \qquad .

(A) 65 and 53
(B) 60 and 50
(C) 55 and 53
(D) 55 and 48

Ans. D
Sol.

\therefore The number of students who took exam for $1^{\text {st }}$ time in year $2 \quad \Rightarrow \quad 50+5=55$
The number of students who took exam for $1^{\text {st }}$ time in year $3 \quad \Rightarrow \quad 45+3=48$ Hence, the correct option is (D).

Question 61

General Aptitude (1M)

Which one of the following numbers is exactly divisible by $\left(11^{13}+1\right)$?
(A) $11^{26}+1$
(B) $11^{33}+1$
(C) $11^{39}-1$
(D) $11^{52}-1$

Ans. D
Sol. $\quad \because \frac{\left(x^{n}-a^{n}\right)}{(x+a)}$ for n is even

$$
x=(11)^{13}
$$

$$
a=(1)^{13}
$$

$$
\therefore \frac{x^{n}-a^{n}}{(x+a)}=\frac{\left\{(11)^{13}\right\}^{n}-\left\{(1)^{13}\right\}^{n}}{(11)^{13}+(1)^{13}}
$$

$$
=\frac{\left\{(11)^{13}\right\}^{4}-\left\{(1)^{13}\right\}^{4}}{(11)^{13}+(1)^{13}} \quad \text { for } n=4 \text { (even) }
$$

$$
=\frac{\left[\left\{(11)^{13}\right\}^{2}-\left\{(1)^{13}\right\}^{2}\right]\left[\left\{(11)^{13}\right\}^{2}+\left\{(1)^{13}\right\}^{2}\right]}{(11)^{13}+(1)^{13}}
$$

$\because a^{2}-b^{2}=(a-b)(a+b)$

$$
\frac{x^{n}-a^{n}}{(x+a)}=\frac{\left[\left(11^{13}-1^{13}\right)\left(11^{13}+1^{13}\right)\right]\left[\left(11^{13}\right)^{2}+\left(1^{13}\right)^{2}\right]}{11^{13}+1^{13}}
$$

$\therefore\left(11^{52}-1\right)$ is divisible by $\left(11^{13}+1\right)$.
Hence, the correct option is (D).
Question 62
A transparent square sheet shown below is folded along the dotted line. The folded sheet will look like.

page GATE 2021 [Forenoon Session] 59 Electrical Engineering

(A)

(C)

(B)

(D)

Ans. C
Sol.

Hence, the correct option is (C).

Question 63

General Aptitude (2M)
In the figure shown above, each inside square is formed by joining the mid points of the sides of the next larger square. The area of the smallest square (shaded) as shown, in cm^{2} is

(A) 12.50
(B) 6.25
(C) 3.125
(D) 1.5625

Ans. C
Sol. From figure, side of outer square $=$ diagonal of inside square
\therefore Side of square \Rightarrow

page GATE 2021 [Forenoon Session] 60 Electrical Engineering

\because Side of $6^{\text {th }}$ square (smallest square) $=\frac{10}{4 \sqrt{2}}$
\therefore Area $=\frac{100}{32}=3.125 \mathrm{~cm}^{2}$
Hence, the correct option is (C).

Question 64

General Aptitude (2M)

Let X is a continuous random variable denoting the temperature measured. The range of temperature is $[0,100]$ degree Celsius and let the probability density function of X be $f(x)=0.01$ for $0 \leq X \leq 100$. The mean of X is \qquad .
(A) 2.5
(B) 5.0
(C) 25.0
(D) 50.0

Ans. D
Sol. Given : PDF $f(x)=0.01 ; \quad 0 \leq x \leq 100$

$$
E(x)=\int_{-\infty}^{\infty} x f(x) d x
$$

\because It is uniform probability distribution

$$
\therefore \quad E(x)=\frac{0+100}{2}=50
$$

Hence, the correct option is (D).
Question 65

General Aptitude (2M)

The importance of sleep is often overlooked by students when they are preparing for exams. Research has consistently shown that sleep deprivation greatly reduces the ability to recall the material learnt.
Hence, cutting down on sleep to study longer hours can be counterproductive.
Which one of the following statements is the CORRECT inference from the above passage?
(A) Sleeping well alone is enough to prepare for an exam. Studying has lesser benefit.
(B) Students are efficient and are not wrong in thinking that sleep is a waste of time.
(C) If a student is extremely well prepared for an exam, he needs little or no sleep.
(D) To do well in an exam, adequate sleep must be part of the preparation.

Ans. D

