Technical Section

Question 1

The block diagram of a feedback control system is shown in the figure,

The transfer function $\frac{Y(s)}{X(s)}$ of the system is
(A) $\frac{G_{1}+G_{2}+G_{1} G_{2} H}{1+G_{1} H}$
(B) $\frac{G_{1}+G_{2}}{1+G_{1} H+G_{2} H}$
(C) $\frac{G_{1}+G_{2}}{1+G_{1} H}$
(D) $\frac{G_{1}+G_{2}+G_{1} G_{2} H}{1+G_{1} H+G_{2} H}$

Ans. C
Sol. Given block diagram is as shown below,

The signal flow graph is shown below,

Number of forward paths and its associate path factor is,

$$
\begin{array}{ll}
P_{1}=G_{1} & \Delta_{1}=1 \\
P_{2}=G_{2} & \Delta_{2}=1
\end{array}
$$

Number of individual loops,

$$
L_{1}=-G_{1} H
$$

Determinant of $S F G$ is,

$$
\Delta=1-\left(L_{1}\right)=1-\left(-G_{1} H\right)=1+G_{1} H
$$

From the Mason's gain formula the transfer function of this system can be given as

$$
\begin{aligned}
& \frac{Y(s)}{X(s)} & =\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta} \\
\therefore \quad & \frac{Y(s)}{X(s)} & =\frac{G_{1}+G_{2}}{1+G_{1} H}
\end{aligned}
$$

Hence, the correct option is (C).

Question 2

Network Theory (2M)
In the circuit shown in figure, the switch is closed at time $t=0$, while the capacitor is initially charged to -5 V [i.e. $V_{C}(0)=-5 \mathrm{~V}$]

The time after which the voltage across the capacitor becomes zero is (Round off to 3 decimal places)
\qquad ms .
Ans.
0.1386

Sol. Given, initial value of voltage across capacitor

$$
V_{C}\left(0^{-}\right)=-5 \mathrm{~V}
$$

When switch is closed and circuit is in steady state (i.e. $t=\infty$, and capacitor becomes open circuit) So circuit becomes as,

(Circuit at steady state i.e. $t=\infty$)
Apply KCL at node $V_{C}(\infty)$ is,

$$
\begin{aligned}
& \frac{V_{C}(\infty)}{250}+\frac{V_{C}(\infty)-5}{250}+\frac{V_{R}}{500}=0 \quad\left(\because V_{R}=V_{C}(\infty)\right) \\
& \frac{V_{C}(\infty)}{250}+\frac{V_{C}(\infty)-5}{250}+\frac{5-V_{C}(\infty)}{500}=0 \\
& 2 V_{C}(\infty)+2 V_{C}(\infty)-10+5-V_{C}(\infty)=0 \\
& 3 V_{C}(\infty)=5
\end{aligned}
$$

$$
V_{C}(\infty)=\frac{5}{3} \mathrm{~V} \rightarrow \text { Steady state voltage of capacitor }
$$

Now, for calculating time constant (τ), first we calculate $R_{t h}$ as shown below,

Apply KCL at node N,

$$
\begin{array}{ll}
& \frac{1}{250}+\frac{1-0}{250}+\frac{V_{R}}{500}=I \\
& I=\frac{1}{250}+\frac{1}{250}+\frac{-1}{500} \\
& I=\frac{3}{500} \\
\therefore \quad & R_{t h}=\frac{1}{I}=\frac{500}{3} \Omega
\end{array}
$$

Thus, time constant, $\quad \tau=R_{t h} \times C$

$$
\tau=\frac{500}{3} \times 0.6 \times 10^{-6}
$$

$$
\tau=500 \times 0.2 \times 10^{-6}=0.1 \mathrm{msec}
$$

Apply transient equation for voltage across capacitor is,

$$
\begin{align*}
& V_{C}(t)=V_{C}(\infty)+\left[V_{C}(0)-V_{C}(\infty)\right] e^{-t / \tau}, t \geq 0 \\
& V_{C}(t)=\frac{5}{3}+\left[-5-\frac{5}{3}\right] e^{-t / \tau} \\
& V_{C}(t)=\frac{5}{3}-\frac{20}{3} e^{-t / \tau} \tag{i}
\end{align*}
$$

If $V_{C}(t)=0$, then equations (i) becomes as,

$$
0=\frac{5}{3}-\frac{20}{3} e^{-t / \tau}
$$

$$
\begin{aligned}
& \frac{5}{3}=\frac{20}{3} e^{-t / \tau} \\
& \frac{1}{4}=e^{-t / \tau} \\
& e^{-t / \tau}=0.25 \\
& \frac{-t}{\tau} \ln (e)=\ln (0.25) \\
& t=-\tau \ln (0.25) \\
& t=-0.1 \ln (0.25)=0.1386 \mathrm{msec}
\end{aligned}
$$

Hence, the correct answer of t is 0.1386 msec .

Question 3

Analog Electronics (1M)
Consider the circuit with an ideal Op-Amp shown in figure,

Assuming $\left|V_{I N}\right| \ll\left|V_{C C}\right|$ and $\left|V_{\text {REF }}\right| \ll\left|V_{C C}\right|$. The condition at which $V_{\text {out }}$ equal to zero is
(A) $V_{I N}=V_{\text {REF }}$
(B) $V_{I N}=0.5 V_{\text {REF }}$
(C) $V_{I N}=2 V_{R E F}$
(D) $V_{I N}=2+V_{\text {REF }}$

Ans. A
Sol. Given circuit is shown below,

According to question, $\left|V_{I N}\right| \ll\left|V_{C C}\right|$ and $\left|V_{\text {REF }}\right| \ll\left|V_{C C}\right|$
Here, Op-Amp is ideal and -ve feedback is present so virtual ground concept is applicable.
So,

$$
V_{+}=V_{-}=0
$$

Thus applying KCL at node N,

$$
\begin{aligned}
& \frac{0-V_{\text {IN }}}{R}+\frac{0+V_{\text {REF }}}{R}+\frac{0-V_{\text {out }}}{R_{F}}=0 \\
& \frac{V_{\text {out }}}{R_{F}}=\frac{V_{\text {REF }}-V_{\text {IN }}}{R} \\
& V_{\text {out }}=\frac{R_{F}}{R}\left[V_{\text {REF }}-V_{\text {IN }}\right]
\end{aligned}
$$

According to question, $V_{\text {out }}=0$

$$
\begin{aligned}
& 0=\frac{R_{F}}{R}\left[V_{\text {REF }}-V_{I N}\right] \\
& V_{\text {REF }}-V_{I N}=0 \\
& V_{\text {REF }}=V_{I N}
\end{aligned}
$$

Hence, the correct answer is option (A).

Question 4

Analog Electronics (2M)
A circuit with an ideal OPAMP is shown in the figure. A pulse $V_{I N}$ of 20 ms duration is applied to the input. The capacitors are initially uncharged.
The output voltage $V_{\text {out }}$ of this circuit at $t=0^{+}$(in integer) is \qquad V.

Ans. -12
Sol. The given circuit is shown below,

> Both capacitor is in parallel form

Above figure can be redrawn as

According to transient theory, at $t=0^{+}$, capacitor will be short circuit, so above circuit becomes as,

From above circuit it is clear that,

$$
\begin{aligned}
& V_{-}=V_{I N}=+5 \mathrm{~V} \\
& V_{+}=0 \mathrm{~V} \\
& V_{-} \neq V_{+}
\end{aligned}
$$

Here,
It means, voltage at both terminals of op-amp are unequal and fixed so virtual ground concept is not valid here and op-amp work as a comparator.
Thus, $V_{-}>V_{+}$
So, $V_{\text {out }}=-V_{\text {sat }}$
$V_{\text {out }}=-12 \mathrm{~V}$
Hence, the output voltage $V_{\text {out }}$ of this circuit at $t=0^{+}$is -12 V .

Question 5
For the circuit with an ideal Op-Amp shown in the figure. $V_{\text {REF }}$ is fixed.

GATE ACADEMY
steps to success...
If $V_{\text {out }}=1$ volt, for $V_{\text {in }}=0.1$ volt and $V_{\text {out }}=6$ volt, for $V_{\text {in }}=1$ volt. Where $V_{\text {out }}$ is measured across R_{L} load connected at the output of this Op-Amp, the value of $\frac{R_{F}}{R_{i n}}$ is
(A) 3.285
(B) 2.860
(C) 3.825
(D) 5.555

Ans. - $\mathbf{5 . 5 5}$ (According to IIT Bombay option D is correct)
Sol. The given circuit is shown below,

Given :

(i) $V_{\text {out }}=1 \mathrm{~V}$ when $V_{\text {in }}=0.1 \mathrm{~V}$
(ii) $V_{\text {out }}=6 \mathrm{~V}$ when $V_{\text {in }}=1 \mathrm{~V}$

By voltage divider rule, voltage at non-inverting terminal can be found as

Thus, $V_{+}=\left(\frac{R}{R+R}\right) V_{\text {ref }}$

$$
V_{+}=\frac{V_{r e f}}{2}
$$

Here virtual ground concept is applicable because -ve feedback is present and op-amp is ideal so due to virtual ground concept,

$$
V_{-}=V_{+}=\frac{V_{r e f}}{2}
$$

Applying KCL at V_{-},

$$
\frac{V_{-}-V_{\text {in }}}{R_{\text {in }}}+\frac{V_{-}-V_{\text {out }}}{R_{F}}=0
$$

$$
\begin{align*}
& \frac{\frac{V_{\text {ref }}}{2}-V_{\text {in }}}{R_{\text {in }}}+\frac{\frac{V_{\text {ref }}}{2}-V_{\text {out }}}{R_{F}}=0 \\
& \frac{V_{\text {ref }}}{2}\left[\frac{1}{R_{\text {in }}}+\frac{1}{R_{F}}\right]-\frac{V_{\text {in }}}{R_{\text {in }}}=\frac{V_{\text {out }}}{R_{F}} \\
& \frac{V_{\text {ref }}}{2}\left[\frac{R_{\text {in }}+R_{F}}{R_{\text {in }} R_{F}}\right]-\frac{V_{\text {in }}}{R_{\text {in }}}=\frac{V_{\text {out }}}{R_{F}} \\
& \frac{V_{\text {ref }}}{2}\left[1+\frac{R_{F}}{R_{\text {in }}}\right]-\left(\frac{R_{F}}{R_{\text {in }}}\right) V_{\text {in }}=V_{\text {out }} \tag{i}
\end{align*}
$$

Condition 1 : If $V_{\text {out }}=1 \mathrm{~V}$ when $V_{\text {in }}=0.1 \mathrm{~V}$ then equation (i) becomes as

$$
\begin{equation*}
\frac{V_{r e f}}{2}\left[1+\frac{R_{F}}{R_{i n}}\right]-(0.1)\left(\frac{R_{F}}{R_{i n}}\right)=1 \tag{ii}
\end{equation*}
$$

Condition 2: If $V_{\text {out }}=6 \mathrm{~V}$ when $V_{\text {in }}=1 \mathrm{~V}$ then equation (ii) becomes as

$$
\begin{equation*}
\frac{V_{r e f}}{2}\left[1+\frac{R_{F}}{R_{i n}}\right]-(1)\left(\frac{R_{F}}{R_{i n}}\right)=6 \tag{iii}
\end{equation*}
$$

Assume $\frac{V_{r e f}}{2}\left[1+\frac{R_{F}}{R_{i n}}\right]=x$, then subtracting equation (iii) from (ii) then,

$$
\begin{aligned}
& \left(x-0.1 \frac{R_{F}}{R_{i n}}\right)-\left(x-1 \frac{R_{F}}{R_{i n}}\right)=1-6 \\
& 0.9 \frac{R_{F}}{R_{i n}}=-5 \\
& \frac{R_{F}}{R_{i n}}=-\frac{5}{0.9}=-5.55
\end{aligned}
$$

Note : As per the given data of question we get negative answer so none of the option is matched.

Question 6

The energy band diagram of a p-type semiconductor bar of length L under equilibrium condition (i.e. the Fermi energy levels E_{F} is constant) is shown in the figure. The valance band E_{V} is sloped since doping is non-uniform along the bar. The difference between the energy levels of the valance band at the two edges of the bar is Δ.

If the charge of an electron is q then the magnitude of the electric field developed inside this semiconductor bar is
(A) $\frac{\Delta}{q L}$
(B) $\frac{2 \Delta}{q L}$
(C) $\frac{\Delta}{2 q L}$
(D) $\frac{3 \Delta}{2 q L}$

Ans. A
Sol. From questions it is clear that, change in energy level / difference in energy level of E_{C} and E_{V} is Δ.

$$
\begin{align*}
E & =-\frac{d V}{d x} \\
\because \quad E_{C} & =-q V \\
E & =+\frac{1}{q} \frac{d E_{C}}{d x} \tag{i}
\end{align*}
$$

$d E_{C} \rightarrow$ Change in energy level $=\Delta$
$d x \rightarrow$ Length of bar $=L$
Hence, equation (i) becomes as

$$
E=\frac{+\Delta}{q L}
$$

Hence, the correct option is (A).

Question 7

Electronic Devices (1M)
A bar of silicon is doped with boron concentration of $10^{16} \mathrm{~cm}^{-3}$ and assumed to be fully ionized. It is exposed to light such that electron-hole pairs are generated throughout the volume of the bar at the rate of $10^{20} \mathrm{~cm}^{-3} \mathrm{~s}^{-1}$. If the recombination lifetime is $100 \mu \mathrm{~s}$ and intrinsic carrier concentration of silicon is 10^{10}

GATE ACADEMY
steps to success...
cm^{-3} and assuming 100% ionization of boron, then the approximate product of steady-state electron and hole concentration due to this light exposure is
(A) $10^{20} \mathrm{~cm}^{-6}$
(B) $2 \times 10^{20} \mathrm{~cm}^{-6}$
(C) $10^{32} \mathrm{~cm}^{-6}$
(D) $2 \times 10^{32} \mathrm{~cm}^{-6}$

Ans. D
Sol. Given :
Boron concentration $N_{A}=10^{16} \mathrm{~cm}^{-3}$
So,

$$
N_{A}=p_{p_{0}}=10^{16} \mathrm{~cm}^{-3}
$$

Generation Rate $G_{p}=10^{20} \mathrm{~cm}^{-3} \mathrm{~s}^{-1}$
Recombination life time $\tau_{p}=100 \mu$ sec
Intrinsic carrier concentration $n_{i}=10^{10} \mathrm{~cm}^{-3}$
Using mass action law under thermal equilibrium

$$
\begin{aligned}
& n_{p_{0}}=\frac{n_{i}^{2}}{p_{p_{0}}}=\frac{n_{i}^{2}}{N_{A}}=\frac{\left(10^{10}\right)^{2}}{10^{16}} \\
& n_{p_{0}}=10^{4} \mathrm{~cm}^{-3} \rightarrow \text { under no light exposed. }
\end{aligned}
$$

So minority carrier concentration $n_{p_{0}}$ when light is not exposed is $10^{4} \mathrm{~cm}^{-3}$
When light exposed,

So after exposing light, excess carrier concentration is

$$
\Delta n=\Delta p
$$

So, generation rate G_{p} is
$G_{p}=\frac{\Delta p}{\tau_{p}}$
$\Delta p=G_{p} \times \tau_{p}=10^{20} \times 100 \mu \mathrm{sec}$

$$
\begin{aligned}
& \Delta p=10^{16} \mathrm{~cm}^{-3} \\
& \Delta n=10^{16} \mathrm{~cm}^{-3}
\end{aligned}
$$

So after exposing light, under equilibrium,

1. Electrons concentration :

$$
n_{p_{0}}+\Delta n=\left(10^{4}+10^{16}\right) \mathrm{cm}^{-3} \cong 10^{16} \mathrm{~cm}^{-3}
$$

2. Hole concentration :

GATE ACADEMY
steps to success...

$$
p_{p_{0}}+\Delta_{p}=\left(10^{16}+10^{16}\right) \mathrm{cm}^{-3}=2 \times 10^{16} \mathrm{~cm}^{-3}
$$

Thus, product of hole concentration and electron concentration after exposing the light is

$$
\left(n_{p_{0}}+\Delta_{n}\right)\left(p_{p_{0}}+\Delta_{p}\right)=10^{16} \times 2 \times 10^{16}=2 \times 10^{32} \mathrm{~cm}^{-6}
$$

Hence, the correct option is (D).
Question 8
Electronic Devices (2M)
A silicon $\mathrm{P}-\mathrm{N}$ junction is shown in the figure. The doping in the P region is $5 \times 10^{16} \mathrm{~cm}^{-3}$ and doping in the N region is $10 \times 10^{16} \mathrm{~cm}^{-3}$. The parameters given are

Built in voltage $\left(\phi_{b i}\right)=0.8 \mathrm{~V}$
Electron charge $(q)=1.6 \times 10^{-19} \mathrm{C}$
Vacuum permittivity $\left(\varepsilon_{0}\right)=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
Relative permittivity of silicon $\left(\varepsilon_{s i}\right)=12$

The magnitude of reverse bias voltage that would completely deplete one of the two regions (P or N) prior to the other (rounded off to one decimal place) is \qquad V.

Ans. 107.67

Sol. Given:

Doping in P-region $N_{A}=5 \times 10^{16} \mathrm{~cm}^{-3}$
Doping in N-region $N_{D}=10^{17} \mathrm{~cm}^{-3}$
Built in voltage $\left(\phi_{b i}\right)=0.8 \mathrm{~V}$
Electron charge $(q)=1.6 \times 10^{-19} \mathrm{C}$
Vacuum permittivity $\left(\varepsilon_{0}\right)=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
Relative permittivity of silicon $\left(\varepsilon_{s i}\right)=12$

Given p-n junction is shown below,

So width of depletion region, $W=X_{n}+X_{p}$
From charge equality concept,

$$
\begin{aligned}
& X_{n} \cdot N_{D}=X_{p} \cdot N_{A} \\
& X_{n} \cdot N_{D}=\left(W-X_{n}\right) N_{A} \\
& X_{n}\left(N_{D}+N_{A}\right)=W \cdot N_{A} \\
& X_{n}=\frac{W N_{A}}{N_{A}+N_{D}}=\frac{W \times 5 \times 10^{16}}{\left(5 \times 10^{16}\right)+\left(10 \times 10^{16}\right)} \\
& X_{n}=\frac{W \times\left(5 \times 10^{16}\right)}{15 \times 10^{16}}=\frac{W}{3}
\end{aligned}
$$

So, $X_{p}=W-X_{n}=W-\frac{W}{3}$

$$
X_{p}=\frac{2}{3} \mathrm{~W}
$$

Suppose when N -is depleted completely, during reverse bias so,

$$
\begin{array}{ll}
& X_{n}=0.2 \mu \mathrm{~m} \\
\therefore & W=3 X_{n}=0.6 \mu \mathrm{~m} \\
& X_{p}=\frac{2}{3} \times W=\frac{1.2}{3}=0.4 \mu \mathrm{~m}
\end{array}
$$

i.e. when N is depleted completely (i.e. $0.2 \mu \mathrm{~m}$) then and only then P side is depleted only by $0.4 \mu \mathrm{~m}$ only. Thus

$$
\left.\begin{array}{l}
X_{n}=0.2 \mu \mathrm{~m} \\
W=0.6 \mu \mathrm{~m}
\end{array}\right\} \rightarrow(N \text { region depleted completely })
$$

So, total depletion width (W) under reverse bias is,

$$
\begin{aligned}
& W=\sqrt{\frac{2 \varepsilon\left(V_{0}+V_{R}\right)}{q}\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right)} \\
& W^{2}=\frac{2 \varepsilon\left(V_{0}+V_{R}\right)}{q}\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right) \\
& \left(0.6 \times 10^{-6} \times 100\right)^{2}=\frac{2 \times 12 \times 8.85 \times 10^{-14}}{1.6 \times 10^{-19}}\left(\frac{1}{5 \times 10^{16}}+\frac{1}{10 \times 10^{16}}\right)\left(V_{0}+V_{R}\right) \\
& \left(0.6 \times 10^{-4}\right)^{2}=3.9825 \times 10^{-10}\left(V_{0}+V_{R}\right) \\
& V_{0}+V_{R}=9.0395 \\
& V_{R}=9.0395-V_{0} \\
& V_{R}=9.0395-0.8
\end{aligned}
$$

$V_{R}=8.2395 \mathrm{~V} \approx 8.24 \mathrm{~V}$
Thus, the magnitude of reverse bias voltage that would completely deplete N region is 8.24 V .
Hence, the correct answer for V_{R} is 8.24 V .

Question 9

Control Systems (2M)
The electrical system shown in figure, converts input source current $i_{s}(t)$ to output voltage $V_{0}(t)$.

Current $i_{L}(t)$ in the inductor and voltage $V_{C}(t)$ across the capacitor are taken as the state variables, both assumed to be initially equal to zero i.e. $i_{L}(0)=0$ and $V_{C}(0)=0$. The system is
(A) Completely state controllable as well as completely observable.
(B) Completely state controllable but not observable.
(C) Completely state observable but not state controllable.
(D) Neither state controllable nor observable.

Ans. D
Sol. Given circuit is shown below,

Assume,

$$
\begin{array}{llll}
\text { Assume, } & i_{L}(t)=x_{1} & \rightarrow & \text { First state variable } \\
& V_{C}(t)=x_{2} & \rightarrow & \text { Second state variable } \\
& i_{s}(t)=u & \rightarrow & \text { Input of system } \\
\text { and } & V_{0}(t)=y & \rightarrow & \text { Output of system }
\end{array}
$$

Apply KCL at node N,

$$
\begin{align*}
& i_{s}(t)=\frac{d}{d t} V_{C}(t)+\frac{V_{C}(t)}{1} \\
& u=\frac{d}{d t} x_{2}+x_{2} \\
& u=\dot{x}_{2}+x_{2} \\
& \dot{x}_{2}=-x_{2}+u \tag{i}
\end{align*}
$$

KVL in the loop between inductor and resistor,

$$
\begin{align*}
& i_{s}(t)-i_{L}(t)=\frac{d}{d t} i_{L}(t) \\
& u-x_{1}=\frac{d}{d t} x_{1} \\
& u-x_{1}=\dot{x}_{1} \\
& \dot{x}_{1}=-x_{1}+u \tag{ii}
\end{align*}
$$

Output, $\quad V_{0}(t)=V_{C}(t)$

$$
\begin{equation*}
y=x_{2} \tag{iii}
\end{equation*}
$$

From equation (i), (ii) and (iii), state variable modal can be written as,

$$
\begin{aligned}
& \binom{\dot{x}_{1}}{\dot{x}_{2}}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u \\
& y=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

Thus matrices A, B, and C are,

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right], B=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { and } C=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \\
& A B=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]
\end{aligned}
$$

Condition of controllability,

$$
\begin{array}{ll}
\therefore & {\left[Q_{C}\right]=\left[\begin{array}{ll}
B & A B
\end{array}\right]} \\
& {\left[Q_{C}\right]=\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]} \\
\therefore & \left|Q_{C}\right|=-1+1=0
\end{array}
$$

Thus, system is uncontrollable.

$$
A^{T} C^{T}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$

Condition of observability,

$$
\begin{aligned}
& {\left[Q_{0}\right]=\left[\begin{array}{cc}
C^{T} & A^{T} C^{T}
\end{array}\right]} \\
& {\left[Q_{0}\right]=\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]} \\
& \left|Q_{0}\right|=0
\end{aligned}
$$

Thus, system is un-observable.
So, the system is neither controllable nor observable.
Hence, the correct option is (D).

Question 10

Electromagnetic Theory (2M)
An antenna with a directive gain of 6 dB is radiating a total power of 16 kW . The amplitude of electric field in free space at a distance of 8 km from the antenna in the direction of 6 dB gain is (Round off to 3 decimal places) \qquad V/m.

Ans. 0.2443
Sol. Given : Directive gain $G_{d}(\theta, \phi)=6 \mathrm{~dB}$
Radiation power $P_{r a d}=16 \mathrm{~kW}$
Distance $r=8 \mathrm{~km}$
Directive gain $G_{d}(d B)=6=10 \log G_{d}$

$$
G_{d}=10^{0.6}=3.981
$$

So maximum electric field amplitude in free space at distance r from antenna is,

$$
\left|E_{s}\right|_{\max }=\eta\left[\frac{G_{d} P_{r a d}}{2 \pi r^{2}}\right]=\frac{120 \pi \times 3.981 \times 16 \times 10^{3}}{2 \pi\left(8 \times 10^{3}\right)^{2}}=0.2443 \mathrm{~V} / \mathrm{m}
$$

Hence, the correct answer for $\left|E_{s}\right|_{\max }$ is $0.2443 \mathrm{~V} / \mathrm{m}$.

Question 11

For a vector field $\overrightarrow{\mathbf{D}}=\rho \cos ^{2} \phi \hat{\mathbf{a}}_{\boldsymbol{p}}+z^{2} \sin ^{2} \phi \hat{\mathbf{a}}_{\phi}$ in a cylindrical coordinate system (ρ, ϕ, z) with unit vector $\hat{\boldsymbol{a}}_{\rho}, \hat{\boldsymbol{a}}_{\phi}$ and $\hat{\boldsymbol{a}}_{z}$, the net flux of $\overrightarrow{\mathbf{D}}$ leaving the closed surface of the cylinder $(\rho=3,0 \leq z \leq 2)$ (Round off to 2 decimal places) is \qquad .
Ans. 56.548
Sol. Given : $\overrightarrow{\mathbf{D}}=\rho \cos ^{2} \phi \hat{\mathbf{a}}_{\boldsymbol{\rho}}+z^{2} \sin ^{2} \phi \hat{\mathbf{a}}_{\phi}$
Cylinder $(\rho=3,0 \leq z \leq 2)$ is shown below,

From this given cylinder,

$$
\rho=3 \mathrm{~m}, z=0 \text { to } 2 \mathrm{~m}, \phi=0 \text { to } 2 \pi
$$

Shaded portion shows closed surface of cylinder and unit vector that is perpendicular this surface is $\hat{\boldsymbol{a}}_{\rho}$ thus, net flux (ψ) leaving the closed surface of cylinder is

$$
\begin{aligned}
& \psi=\iint \overrightarrow{\mathbf{D}} \cdot \overrightarrow{d \mathbf{s}}=\int_{\phi=0}^{2 \pi} \int_{z=0}^{2}\left(\rho \cos ^{2} \phi \hat{\mathbf{a}}_{\boldsymbol{\rho}}+z^{2} \sin ^{2} \phi \hat{\mathbf{a}}_{\phi}\right) \cdot\left(\rho d \phi d z \hat{\mathbf{a}}_{\rho}\right) \\
& \psi=\left.\int_{\phi=0}^{2 \pi} \int_{z=0}^{2} \rho^{2} \cos ^{2} \phi d \phi d z\right|_{\rho=3} \quad\left(\because \hat{a}_{\rho} \cdot \hat{a}_{\rho}=1 \text { and } \hat{a}_{\rho} \cdot \hat{a}_{\phi}=0\right) \\
& \psi=3^{2} \times(2-0) \times \frac{2 \pi}{2}=18 \pi \mathrm{C} \\
& \psi=18 \pi=56.548 \mathrm{C}
\end{aligned}
$$

Hence, total flux ψ living closed surface of the given cylinder as 56.548 C .

Question 12

The vector function $\mathbf{F}(\mathbf{r})=-x \hat{i}+y \hat{j}$ is defined over a circular are C shown in the figure,

The line integral of $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ is
(A) $1 / 2$
(B) $1 / 4$
(C) $1 / 6$
(D) $1 / 3$

Ans. A
Sol. Given : $\mathbf{F}(\mathbf{r})=-x \hat{i}+y \hat{j}$

So,

$$
\begin{aligned}
& \int_{C} \mathbf{F}(\mathbf{r}) d \mathbf{r}=\int_{C}(-x \hat{i}+y \hat{j}) \cdot(d x \hat{i}+d y \hat{j}) \\
& \int_{C} \mathbf{F}(\mathbf{r}) d \mathbf{r}=\int_{C}(-x \cdot d x+y \cdot d y) \quad \ldots \text { (i) } \quad(\because \hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=1)
\end{aligned}
$$

Assume, $x=r \cos \theta, y=r \sin \theta$

$$
\begin{array}{ll}
\because \quad & r=1 \\
x & =\cos \theta \text { and } y=\sin \theta
\end{array}
$$

Here, θ, Variation from 0 to 45^{0}.
Put $x=\cos \theta, y=\sin \theta$

$$
\begin{aligned}
& d x=-\sin \theta d \theta \\
& d y=\cos \theta d \theta
\end{aligned}
$$

Thus equation (i) becomes as

$$
\begin{aligned}
& \int_{C} \mathbf{F}(\mathbf{r}) d \mathbf{r}=\int_{\theta=0}^{\pi / 4}-\cos \theta(-\sin \theta d \theta)+\sin \theta(\cos \theta d \theta) \\
& \int_{C} \mathbf{F}(\mathbf{r}) d \mathbf{r}=\int_{\theta=0}^{\pi / 4}(\cos \theta \sin \theta+\sin \theta \cos \theta) d \theta \\
& \int_{C} \mathbf{F}(\mathbf{r}) d \mathbf{r}=\int_{\theta=0}^{\pi / 4} \sin 2 \theta d \theta=\left[\frac{-\cos 2 \theta}{2}\right]_{0}^{\pi / 4} \\
& \int_{C} \mathbf{F}(\mathbf{r}) d \mathbf{r}=\frac{-1}{2}\left[\cos \frac{\pi}{2}-\cos 0\right]=\frac{-1}{2}(-1) \\
& \int_{C} \mathbf{F}(\mathbf{r}) d \mathbf{r}=\frac{1}{2}
\end{aligned}
$$

Hence, the correct option is (A).

Consider the vector field $\overline{\mathbf{F}}=\hat{\mathbf{a}}_{\mathbf{x}}\left(4 y-c_{1} z\right)+\hat{\mathbf{a}}_{y}(4 x+2 z)+\hat{\mathbf{a}}_{\mathbf{z}}(2 y+z)$ in a rectangular coordinate system (x, y, z) with unit vectors $\hat{\mathbf{a}}_{x}, \hat{\mathbf{a}}_{y}, \hat{\mathbf{a}}_{z}$. If the field \mathbf{F} is irrotational (conservative), then the constant c_{1} (in integer) is \qquad .
Ans. 0
Sol. Given : $\overline{\mathbf{F}}=\hat{\mathbf{a}}_{\mathbf{x}}\left(4 y-c_{1} z\right)+\hat{\mathbf{a}}_{\mathbf{y}}(4 x+2 z)+\hat{\mathbf{a}}_{\mathbf{z}}(2 y+z)$
Here, $F_{x}=4 y-c_{1} z, F_{y}=4 x-2 z, F_{z}=2 y+z$,
For a vector field to be irrotational its curl must be zero,
i.e.

$$
\begin{aligned}
& \nabla \times \bar{F}=0 \\
& \left|\begin{array}{ccc}
\hat{a}_{x} & \hat{a}_{y} & \hat{a}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|=0 \\
& \left|\begin{array}{ccc}
\hat{a}_{x} & \hat{a}_{y} & \hat{a}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
4 y-c_{1} z & 4 x+2 z & 2 y+z
\end{array}\right|=0 \\
& \hat{a}_{x}[2-2]-\hat{a}_{y}\left[0+c_{1}\right]+\hat{a}_{z}[4-4]=0 \\
& 0 \hat{a}_{x}-c_{1} \hat{a}_{y}+0 \hat{a}_{z}=0 \\
& -c_{1} \hat{a}_{y}=0
\end{aligned}
$$

It shows $\hat{a}_{y} \neq 0$ because it is unit vector.
Thus, $c_{1}=0$ then the above equation will be satisfied.
Hence, the correct answer is zero.

Question 14

The refractive indices of the core and cladding of an optical fiber are 1.50 and 1.48 respectively. The critical propagation angle, which is defined as the maximum angle that the light beam makes with the axis of the optical fiber to achieve the total internal reflection (round off to two decimal places) is \qquad degree.
Ans. 9.32

Sol. Given :

Refractive index of core $n_{1}=1.50$
Refractive index of cladding $n_{2}=1.48$
According to the definition of critical propagation angle given in statement of question, θ_{1}, which is made with optical fiber axis and leads total internal reflection (TIR) in optical fiber cable, so we can calculate θ_{1} as,

Here, $\theta_{A}=$ Acceptance angle

$$
\begin{aligned}
& \theta_{C}=\text { Critical angle } \\
& \theta_{1}=\text { Critical propagation angle } \\
& \cos \theta_{C}=\sqrt{1-\left[\frac{n_{2}}{n_{1}}\right]^{2}}
\end{aligned}
$$

Where, $n_{1}=$ refractive index of core $=1.5$
$n_{2}=$ refractive index of cladding $=1.48$
$\cos \theta_{C}=\sqrt{1-\left[\frac{1.48}{1.50}\right]^{2}}$
$\theta_{C}=\cos ^{-1}[0.1627]$
$\theta_{C}=80.636^{\circ}$

So, from triangle $A B C$,

$$
\begin{aligned}
& \theta_{1}=90^{\circ}-\theta_{C}=90^{\circ}-\left(80.636^{\circ}\right) \\
& \theta_{1}=9.36^{0}
\end{aligned}
$$

Ans.
Hence, the value of critical propagation angle that leads total internal reflection in optical fiber is 9.36°

Question 15

Electromagnetic Theory (1M)

Consider a rectangular coordinate system (x, y, z) with unit vector $\mathbf{a}_{\mathbf{x}}, \mathbf{a}_{\mathbf{y}}$ and $\mathbf{a}_{\mathbf{z}}$. A plane wave travelling in the region $z \geq 0$ with electric field vector $\mathbf{E}=10 \cos \left(2 \times 10^{8} t+\beta z\right) \hat{\mathbf{a}}_{\mathbf{y}}$ is incident normally on the plane at $z=0$, where β is the phase constant. The region $z \geq 0$ is in free space and the region $z<0$ is filled with a lossless medium (permittivity $\varepsilon=\varepsilon_{0}$ permeability $\mu=4 \mu_{0}$, where $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$ and $\left.\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)$. The value of reflection coefficient is
(A) $\frac{1}{3}$
(B) $\frac{3}{5}$
(C) $\frac{2}{5}$
(D) $\frac{2}{3}$

Ans. A
Sol. Given : Medium $1(z \geq 0)$
(i) Medium 1 is free space.
(ii) $\mu_{1}=\mu_{0}, \varepsilon_{1}=\varepsilon_{0}$
(iii) $\mathbf{E}_{1}=10 \cos \left(2 \times 10^{8} t+\beta z\right) \hat{\mathbf{a}}_{\mathbf{y}}$
(iv) $\omega=2 \times 10^{8} \mathrm{rad} / \mathrm{sec},\left(\mathrm{E}_{1}\right)_{m}=10 \mathrm{~V} / \mathrm{m}$
(v) $\eta_{1}=\sqrt{\frac{\mu_{1}}{\varepsilon_{1}}}$

Medium $2(z<0)$

(i) Medium 2 is lossless
(ii) $\mu_{2}=4 \mu_{0}, \varepsilon_{2}=\varepsilon_{0}$
(iii) $\eta_{2}=\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}}$

Reflection coefficient $(\Gamma)=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}$

$$
\Gamma=\frac{\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}}-\sqrt{\frac{\mu_{1}}{\varepsilon_{1}}}}{\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}}+\sqrt{\frac{\mu_{1}}{\varepsilon_{1}}}}
$$

Since, $\varepsilon_{2}=\varepsilon_{1}$

$$
\begin{aligned}
& \Gamma=\frac{\sqrt{\mu_{2}}-\sqrt{\mu_{1}}}{\sqrt{\mu_{2}}+\sqrt{\mu_{1}}} \\
& \Gamma=\frac{\sqrt{4 \mu_{0}}-\sqrt{\mu_{0}}}{\sqrt{4 \mu_{0}}+\sqrt{\mu_{0}}} \\
& \Gamma=\frac{\sqrt{4}-\sqrt{1}}{\sqrt{4}+\sqrt{1}}=\frac{1}{3}
\end{aligned}
$$

Hence, the correct option is (A).

Question 16

Electromagnetic Theory (1M)

The impedance matching network shown in the figure is to match a lossless line having characteristic impedance $Z_{0}=50 \Omega$ with a load impedance Z_{L}. A quarter-wave line having a characteristic impedance $Z_{1}=75 \Omega$ is connected to Z_{L}. Two stubs having characteristic impedance of 75Ω each are connected to this quarter-wave line. One is a short-circuited (S.C.) stub of length 0.25λ connected across PS and the other one is an open-circuited (O.C.) stub of length 0.5λ connected across QR .

The impedance matching is achieved when the real part of Z_{L} is
(A) 112.5Ω
(B) 75.0Ω
(B) 50.0Ω
(D) 33.3Ω

Ans. A

Sol. Given :

Lossless line characteristic impedance $Z_{0}=50 \Omega$
Open circuit stub characteristic impedance $\left(Z_{1}\right)_{o c}=75 \Omega$
Short circuit stub characteristic impedance $\left(Z_{1}\right)_{s c}=75 \Omega$

Method 1 :

The given arrangement of transmission line is shown below,

Here, $\left(Z_{L}\right)_{\text {Line- } 1}=\left(Z_{L}\right)_{o c}=\infty$
$\left(Z_{L}\right)_{\text {Line-3 }}=\left(Z_{L}\right)_{s c}=0$
Input Impedance of $\frac{\lambda}{2}$ long line-1,

$$
Z_{i n}\left[l=\frac{\lambda}{2}\right]_{\text {Line-1 }}=\left(Z_{L}\right)_{\text {Line-1 }}=\infty \rightarrow \text { open circuit }
$$

Thus total impedance at terminal QR is,

$$
Z_{Q R}=Z_{L}\left\|\left(Z_{\text {in }}\right)_{\text {Line-1 }}=Z_{L}\right\| \infty=\mathrm{Z}_{L}
$$

Now arrangement of Transmission Line becomes as,

Thus Input Impedance of line 2 is,

$$
Z_{i n}\left[l=\frac{\lambda}{4}\right]_{\text {Line- } 2}=\frac{Z_{0}^{2}}{Z_{L}}=\frac{75^{2}}{Z_{L}}
$$

Input Impedance of Line 3 is,

$$
Z_{\text {in }}\left[l=\frac{\lambda}{4}\right]_{\text {Line-3 }}=\frac{Z_{0}^{2}}{\left(Z_{L}\right)_{\text {Line }-3}}=\frac{75^{2}}{0}=\infty
$$

Thus total impedance at terminal $P S$ is,

$$
Z_{P S}=\left(Z_{\text {in }}\right)_{\text {Line-2 }} \|\left(Z_{\text {in }}\right)_{\text {Line-3 }}
$$

$$
Z_{P S}=\frac{75^{2}}{Z_{L}} \| \infty=\left(\frac{75^{2}}{Z_{L}}\right)
$$

Now Transmission Line arrangement becomes as-

Hence $Z_{P S}$ work as load for main Transmission line.
For matching of main Transmission line with load $\left(Z_{P S}\right)$,

$$
\begin{aligned}
& Z_{P S}=Z_{o} \\
& \frac{75^{2}}{Z_{L}}=50 \Rightarrow Z_{L}=\frac{75^{2}}{50}=112.5 \Omega
\end{aligned}
$$

Hence, the correct option is (A)
Method 2 :
From given arrangement, it is clear that,

$$
\begin{aligned}
& Z_{\text {in }}\left[l=\frac{\lambda}{2}\right]_{\text {Line }-1}=\left(Z_{L}\right)_{\text {Line-1 }}=\infty \\
& Z_{\text {in }}\left[l=\frac{\lambda}{4}\right]_{\text {Line }-3}=\frac{Z_{0}^{2}}{\left(Z_{L}\right)_{\text {Line }-3}}=\frac{Z_{0}^{2}}{0}=\infty
\end{aligned}
$$

So, input impedance of both line-1 and line-3 are ∞ (i.e. open circuit) so it does not make any effect on main transmission line, so given transmission line configuration becomes as,

Thus Input Impedance at terminal PS is,

$$
\left(Z_{i n}\right)_{P S}=\frac{Z_{0}^{2}}{Z_{L}}=\frac{75^{2}}{Z_{L}} \Omega
$$

So $\left(Z_{\text {in }}\right)_{P S}$ work as load for main transmission line so arrangement of transmission line becomes as,

Hence $\left(Z_{i n}\right)_{P S}$ work as load for main Transmission line so the condition, for matching the main Transmission line with load $\left(Z_{i n}\right)_{P S}$ is

$$
\begin{aligned}
& \left(Z_{i n}\right)_{P S}=Z_{0} \\
& \frac{75^{2}}{Z_{L}}=50 \\
& Z_{L}=\frac{75^{2}}{50}=112.5 \Omega
\end{aligned}
$$

Hence, the correct option is (A)

Question 17

Network Theory (1M)
Consider the circuit shown in figure.

The current I flowing through the 7Ω resistor between P and Q (Round off to 1 decimal places) is

Ans. 0.5

Sol. Given circuit is shown below,

Re-arrange the above circuit as shown below,

Now above circuit reduces as,

Above circuit can be re-arranged as,

Apply current divider rule

$$
I=\frac{5 \times 1}{1+9}=\frac{5}{10}=0.5 \mathrm{~A}
$$

Hence, the correct answer is 0.5 A .

Question 18

The complete Nyquist plot of the open loop transfer function $G(s) H(s)$ of a feedback control system shown in figure,

GATE ACADEMY

If $G(s) H(s)$ has one zero in right half of the s-plane, the number of poles that, the closed loop system will have in right half of s-plane is
(A) 0
(B) 1
(C) 4
(D) 3

Ans. D (According to IIT Bombay Answer is D)
Sol. Given Nyquist plot of $G(s) H(s)$ is shown below

Case 1 :
Here, $G(s) H(s)$ has one zero in the right half of s-plane i.e. $Z=1$.
According to principle of argument
$N=P-Z$ (Anti clockwise direction)
Where,
$N=$ Number of encirclements of Nyquist plot of $G(s) H(s)$ about origin in anti-clockwise direction
$P=$ Number of poles of $G(s) H(s)$ in right half of s-plane.
$Z=$ Number of zeros of $G(s) H(s)$ in right half of s-plane.
Here, $N=-2$ (anti clockwise direction)

$$
Z=1
$$

From equation (i)

GATE ACADEMY
$-2=P-1$
$P=-1$
So, poles cannot be negative in numbers so no more further discussion on this.
Case 2 : If we assume Nyquist contour in anti clockwise direction then according to principle of argument
$N=P-Z$ (Clockwise direction)
Where,
$N=$ Number of encirclements of Nyquist plot of $G(s) H(s)$ about origin in clockwise direction
$P=$ Number of poles of $G(s) H(s)$ in right half of s-plane.
$Z=$ Number of zeros of $G(s) H(s)$ in right half of s-plane.
Here, $N=2$ (Clockwise direction)

$$
Z=1
$$

From equation (iii)

$$
\begin{align*}
2 & =P-1 \\
P & =3 \tag{iv}
\end{align*}
$$

According to Nyquist stability criteria

$$
\begin{equation*}
N=P-Z(\text { Anti clockwise direction }) \tag{v}
\end{equation*}
$$

Where, $N=$ Number of encirclements about $(-1+0 j)$ in clockwise direction
$Z=$ Number of closed loop poles in right half of s-plane.
$P=$ Number of open loop poles or poles of $G(s) H(s)$ in right half of s-plane.
From given Nyquist plot number of encirclements about $(-1+0 j)$ is

$$
N=1-1=0
$$

Using equation (v)

$$
\begin{aligned}
& 0=P-Z \\
& Z=P \\
& Z=3
\end{aligned}
$$

So here number of poles in right half of s-plane is 3 .
Hence, the correct option is (D).

Question 19

Digital Electronics (1M)

An 8-bit unipolar (all analog output values are positive) digital-to-analog converter (DAC) has a full-scale voltage range from 0 V to 7.68 V . If the digital input code is 10010110 (the leftmost bit is MSB), then the analog output voltage of the DAC (rounded off to one decimal place) is \qquad V.

Ans. 4.51
Sol. Given : Number of bits, $n=8$,
Full scale voltage, $V_{F S}=7.68$
Digital input $=(10010110)_{2} \xrightarrow{\text { decimal }}(150)_{10}$

Thus, analog output from 8 bit unipolar DAC is,

$$
\begin{aligned}
& V_{\text {out }}=(\text { Resolution }) \times(\text { Decimal equivalent of digital input }) \\
& V_{\text {out }}=\left(\frac{V_{F S}}{2^{n}-1}\right) \times 150=\left(\frac{7.68}{2^{8}-1}\right) \times 150=4.517 \mathrm{Volt}
\end{aligned}
$$

Hence, the analog output voltage of the 8 bit unipolar DAC is 4.517 Volt
The propagation delays of the XOR gate, AND gate and multiplexer (MUX) in the circuit shown in the figure are $4 \mathrm{~ns}, 2 \mathrm{~ns}$ and 1 ns , respectively.

If all the inputs $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ and T are applied simultaneously and held constant, the maximum propagation delay of the circuit is
(A) 3 ns
(B) 5 ns
(C) 6 ns
(D) 7 ns

Ans. C
Sol. Given :
Delay of XOR gate $=4 \mathrm{~ns}$
Delay of AND gate $=2 \mathrm{~ns}$
Delay of MUX $=1 \mathrm{~ns}$

Case 1 :

Assuming $T=0$ then selection line of MUX $S_{0}=0$, so that MUX input ' 0 ' get enable so path followed by signal in the given circuit is shown by dotted lines as,

So total propagation delay τ_{1} from input to output is,
$\tau_{1}=$ (Propagation delay of AND gate) $+($ Propagation delay of MUX-2)
$\tau_{1}=2 n s+1 n s=3 n s$
Hence MUX input ' 0 ' get enable then propagation delay of given circuit $\tau_{1}=3 n s$

Case 2 :

Assuming $T=1$ then selection line of MUX is $S_{0}=1$, so that MUX input '1' get enable so path followed by signal in the given circuit is shown by dotted lines as,

So total propagation delay τ_{2} from input to output is,
$\tau_{2}=($ Propagation delay of AND gate $)+($ Propagation delay of MUX-1 $)+$
(Propagation delay of AND gate) + (Propagation delay of MUX-2)
$\tau_{2}=2 n s+1 n s+2 n s+1 n s=6 n s$
Hence MUX input '1' get enable then propagation delay of given circuit $\tau_{2}=6 n s$
Hence maximum delay of circuit is $\operatorname{MAX}\left(\tau_{1}, \tau_{2}\right)=\operatorname{MAX}(3 \mathrm{~ns}, 6 \mathrm{~ns})=6 \mathrm{~ns}$
Hence, the correct option is (C).

Question 21

Digital Electronics (2M)

The propagation delay of the exclusive-OR (XOR) gate in the circuit is 3 ns . The propagation delay of all the flip-flops is assumed to be zero. The clock (Clk) frequency provided to the circuit is 500 MHz .

Starting from the initial value of the flip-flop outputs $Q_{2}, Q_{1}, Q_{0}=111$ with $D_{2}=1$, the minimum number of triggering clock edges after which the flip-flop outputs Q_{2}, Q_{1}, Q_{0} becomes 100 (in integer) is \qquad
Ans. 5
Sol.

Given:

Delay of XOR gate $\tau_{p d}=3 \mathrm{~ns}$
Initially $Q_{2} Q_{1} Q_{0}=111$
Initially $D_{2}=1$
Frequency of clock $f=500 \mathrm{MHz}$
Time period of clock $T_{\text {clock }}=\frac{1}{f}=\frac{1}{500}=2 \mathrm{~ns}$.

The numbers of clock's to get $Q_{2} Q_{1} Q_{0}=100$ is shown below,

The minimum number of triggering clock edges after which the flip-flop output $Q_{2} Q_{1} Q_{0}$ becomes 100 is 5.

Question 22
Network Theory (2M)
The switch in the circuit in the figure is in position P for a long time and then moved to position Q at time $t=0$.

The value of $\frac{d}{d t} V(t)$ at $t=0^{+}$is,
(A) $0 \mathrm{~V} / \mathrm{sec}$
(B) $3 \mathrm{~V} / \mathrm{sec}$
(C) $-3 \mathrm{~V} / \mathrm{sec}$
(D) $-5 \mathrm{~V} / \mathrm{sec}$

Ans. C
Sol. Given circuit is shown below,

(i) At $t=0^{-} / \boldsymbol{t}<\mathbf{0} /$ steady state:

Switch is at position P, inductor behaves as short circuit and capacitor behaves as open circuit. So circuit becomes as,

Apply KVL in loop shown by dotted line,

$$
\begin{aligned}
& 20-5 \times i_{L}\left(0^{-}\right)-5 \times i_{L}\left(0^{-}\right)-10 \times i_{L}\left(0^{-}\right)=0 \\
& i_{L}\left(0^{-}\right)=\frac{20}{5+5+10} \\
& i_{L}\left(0^{-}\right)=1 \mathrm{~mA}
\end{aligned}
$$

So voltage $V_{C}\left(0^{-}\right)$is

$$
\begin{aligned}
& V_{C}\left(0^{-}\right)=10 \times i_{L}\left(0^{-}\right) \\
& V_{C}\left(0^{-}\right)=10 \times 1 \\
& V_{C}\left(0^{-}\right)=10 \mathrm{~V}
\end{aligned}
$$

Thus current and voltage across inductor and capacitor at $t=0^{+}$is,

$$
\begin{aligned}
& i_{L}\left(0^{-}\right)=i_{L}\left(0^{+}\right)=1 \mathrm{~mA} \\
& V_{C}\left(0^{-}\right)=V_{C}\left(0^{+}\right)=10 \mathrm{~V}
\end{aligned}
$$

(ii) At $t=\mathbf{0}^{+}$:

Switch is at position Q and Inductor is replaced by a current source with initial value $i_{L}\left(0^{+}\right)$and capacitor is replaced by voltage source with initial value $V_{C}\left(0^{+}\right)$so circuit becomes as,

Apply nodal analysis at node A,

$$
\begin{aligned}
& \frac{10}{5}+i_{C}\left(0^{+}\right)+1=0 \\
& 2+i_{C}\left(0^{+}\right)+1=0
\end{aligned}
$$

$$
i_{C}\left(0^{+}\right)=-3 \mathrm{~mA}
$$

So voltage across capacitor at $t=0^{+}$is,

$$
\begin{aligned}
& i_{C}\left(0^{+}\right)=C \frac{d}{d t} V_{C}\left(0^{+}\right) \\
& \frac{d}{d t} V_{C}\left(0^{+}\right)=\frac{i_{C}\left(0^{+}\right)}{C}=\frac{-3}{1}=-3 \mathrm{~V} / \mathrm{sec}
\end{aligned}
$$

Hence, the correct option is (C).
Question 23
Computer Organization (2M)
The content of the registers are $R_{1}=25 \mathrm{H}, R_{2}=30 \mathrm{H}$ and $R_{3}=40 \mathrm{H}$. The following machine instructions are executed

$$
\begin{aligned}
& \text { PUSH }\left\{R_{1}\right\} \\
& \text { PUSH }\left\{R_{2}\right\} \\
& \text { PUSH }\left\{R_{3}\right\} \\
& \text { POP }\left\{R_{1}\right\} \\
& \operatorname{POP}\left\{R_{2}\right\} \\
& \operatorname{POP}\left\{R_{3}\right\}
\end{aligned}
$$

After execution, the content of registers R_{1}, R_{2}, R_{3} are
(A) $R_{1}=40 \mathrm{H}, R_{2}=30 \mathrm{H}, R_{3}=25 \mathrm{H}$
(B) $R_{1}=25 \mathrm{H}, R_{2}=30 \mathrm{H}, R_{3}=40 \mathrm{H}$
(C) $R_{1}=30 \mathrm{H}, R_{2}=40 \mathrm{H}, R_{3}=25 \mathrm{H}$
(D) $R_{1}=40 \mathrm{H}, R_{2}=25 \mathrm{H}, R_{3}=30 \mathrm{H}$

Ans. A
Sol. Given : $R_{1}=25 \mathrm{H}, R_{2}=30 \mathrm{H}, R_{3}=40 \mathrm{H}$
PUSH $\left\{R_{1}\right\}$
PUSH $\left\{R_{2}\right\}$
PUSH $\left\{R_{3}\right\}$
POP $\left\{R_{1}\right\}$
POP $\left\{R_{2}\right\}$
POP $\left\{R_{3}\right\}$

Hence, $R_{1}=40 \mathrm{H}, R_{2}=30 \mathrm{H}, R_{3}=25 \mathrm{H}$
Hence, the correct option is (A).
Question 24
Signals \& Systems (2M)
The exponential Fourier series representation of continuous time periodic signal $x(t)$ is defined as

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}
$$

where ω_{0} is the fundamental angular frequency of $x(t)$ and the coefficient of series are a_{k}.
The following information is given about $x(t)$ and a_{k}.
(i) $x(t)$ is real and even having fundamental period of 6 sec .
(ii) Average value of $x(t)$ is 2 .
(iii) $a_{k}= \begin{cases}k, & 1 \leq k \leq 3 \\ 0, & k>3\end{cases}$

The average power of the signal $x(t)$ (round of one decimal place) is \qquad .

Ans. 32
Sol. Given :
$x(t)=\sum_{k=\infty}^{\infty} a_{k} e^{j k \omega_{0} t}$
(i) $x(t)$ is real and even with $T=6 \mathrm{sec}$
(ii) Average value of $x(t)=2$
(iii) $a_{k}=\left\{\begin{array}{cc}k, & 1 \leq k \leq 3 \\ 0, & k>3\end{array} \Rightarrow a_{k}=\{\ldots \ldots . .1,2,3\}\right.$

From symmetry conditions, as $x(t)$ is real and even, so its fourier series coefficients will also be real and even.
i.e. $a_{k}^{*}=a_{k}$ and $a_{-k}=a_{k}$
so if $a_{1}=1 \Rightarrow a_{-1}=a_{1}=1$

$$
\begin{aligned}
& a_{2}=2 \Rightarrow a_{-2}=a_{2}=2 \\
& a_{3}=3 \Rightarrow a_{-3}=a_{3}=3 \\
& a_{k}=0 \text { for } k>3 \\
& a_{-k}=0 \text { for } k<-3
\end{aligned}
$$

Also, given that average value of $x(t)$
i.e.

$$
\frac{1}{T} \int_{0}^{T} x(t) d t=a_{0}=2
$$

So, the complete set of Fourier series coefficients is given as

$$
a_{x}=\{3,2,1,2,1,2,3\}=\left\{a_{-3}, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, a_{3}\right\}
$$

Using Parseval's theorem, average power of $x(t)$ is given as

$$
\begin{aligned}
& P_{x}=\frac{1}{T} \int_{0}^{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{\infty}\left|a_{k}\right|^{2} \\
& P_{x}=(3)^{2}+(2)^{2}+(1)^{2}+(2)^{2}+(1)^{2}+(2)^{2}+(3)^{2} \\
& P_{x}=9+4+1+4+1+4+9 \\
& P_{x}=32 \mathrm{~W}
\end{aligned}
$$

Hence, the average power of signal $x(t)$ is 32 W
Question 25
Signals \& Systems (1M)
Consider a real-valued base-band signal $x(t)$, band limited to 10 kHz . The Nyquist rate for the signal $y(t)=x(t) \cdot x\left(1+\frac{t}{2}\right)$ is

(A) 15 kHz
(B) 30 kHz
(C) 60 kHz
(D) 20 kHz

Ans. B
Sol. Given :
$x(t)$ is band limited to 10 kHz
$y(t)=x(t) \cdot x\left(1+\frac{t}{2}\right)=x(t) \cdot x\left[\frac{1}{2}(t+2)\right]$

Method 1 :

Assuming magnitude spectrum of $x(t)$ is shown below,

Let

$$
\begin{aligned}
& x(t) \stackrel{\text { F.T. }}{\longleftrightarrow} X(f) \\
& x_{1}(t)=x(t+1) \stackrel{\text { F.T. }}{\longleftrightarrow} e^{j 2 \pi f} X(f)=X_{1}(f)
\end{aligned}
$$

Magnitude spectrum of $x_{1}(t)$,

$$
\left|X_{1}(f)\right|=|X(f)|
$$

$$
x_{2}(t)=x_{1}\left(\frac{t}{2}\right)=x\left(\frac{t}{2}+1\right) \stackrel{\text { F.T. }}{\longleftrightarrow} 2 e^{j 2 \pi f} X(2 f)=X_{2}(f)
$$

Magnitude spectrum of $x_{2}(t)$,

$$
\left|X_{2}(f)\right|=2|X(2 f)|
$$

Thus applying the property of convolution,

So that spercturm of $\mathrm{Y}(f)$ is shown below,

Bandwidth (BW) of $y(t)=15 \mathrm{kHz}$
So, the nyquist rate of $y(t)=2 \times 15=30 \mathrm{kHz}$
Hence, the correct option is (B).

Method 2 :

Given : $y(t)=x(t) \cdot x\left(1+\frac{t}{2}\right)$
Where maximum frequency component of $\mathrm{x}(\mathrm{t})$ is $f_{m_{1}}=10 \mathrm{kHz}$
To find Nyquist rate of sampling for $y(t)$ we need to find maximum frequency component in $y(t)$
As $y(t)$ is obtained by multiplication of two functions in time domain so Fourier transform of $y(t)$, i.e. $Y(\omega)$ will be the convolution of individual transforms of multiplied signals.

Let,

$$
\begin{align*}
& x\left(\frac{t}{2}+1\right)=x_{1}(t) \\
& y(t)=x(t) \cdot x_{1}(t) \\
& Y(\omega)=\frac{1}{2 \pi} X(\omega) \cdot X_{1}(\omega)=X(f) \cdot X_{1}(f) \tag{i}
\end{align*}
$$

When two functions are convolved, then the left and right most limits of existence of resultant function will be addition of left and right most frequencies of $X(f)$ and $X_{1}(f)$
Given, $X(f)$ has maximum frequency of 10 kHz

$$
x(t) \rightarrow f_{m_{1}}=10 \mathrm{kHz}
$$

As time shifting do not have any effect on the existence duration of its spectrum So

$$
x(t+1) \rightarrow f_{m}^{\prime}=10 \mathrm{kHz}
$$

As expansion in time domain results in compression in frequency domain, so after applying time scaling

$$
x\left(\frac{t}{2}+1\right) \rightarrow f_{m_{2}}=\frac{10}{2}=5 \mathrm{kHz}
$$

So, the maximum frequency component in the convolved signal $y(t)$ is

$$
f_{m}=f_{m 1}+f_{m 2}=15 \mathrm{kHz}
$$

So, the Nyquist sampling rate is given by,

$$
f_{s}=2 f_{m}=2 \times 15 \mathrm{kHz}=30 \mathrm{kHz}
$$

Hence, the correct option is (B).

Question 26

Signals \& Systems (2M)
For a unit step input $u[n]$, a discrete time LTI system produces an output signal $[2 \delta[n+1]+\delta[n]+\delta[n-1]]$. Let $y[n]$ be the output of system for an input $\left[\left(\frac{1}{2}\right)^{n} u[n]\right]$. The value of $y[0]$ is \qquad .
Ans. 0
Sol. Given response of the system for step input, i.e. step response is,

$$
S[n]=2 \delta[n+1]+\delta[n]+\delta[n-1]
$$

Impulse response of the system can be obtained by taking first difference of $S[n]$

$$
\begin{aligned}
& h[n]=S[n]-S[n-1] \\
& h[n]=2 \delta[n+1]+\delta[n]+\delta[n-1]-2 \delta[n]-\delta[n-1]-\delta[n-2] \\
& h[n]=2 \delta[n+1]-\delta[n]-\delta[n-2] \\
& x[n] \longrightarrow \begin{array}{c}
\text { System } \\
h[n]
\end{array} \longrightarrow y[n]
\end{aligned}
$$

For input, $\quad x[n]=\left(\frac{1}{2}\right)^{n} u[n]$
Output, $\quad y[n]=x[n] \otimes h[n]$

$$
\begin{aligned}
& y[n]=\left(\frac{1}{2}\right)^{n} u[n] \otimes\{2 \delta[n+1]-\delta[n]-\delta[n-2]\} \\
& y[n]=2\left(\frac{1}{2}\right)^{n+1} u[n+1]-\left(\frac{1}{2}\right)^{n} u[n]-\left(\frac{1}{2}\right)^{n-2} u[n-2] \quad\left(\because x[n] \otimes \delta\left[n-n_{0}\right]=x\left[n-n_{0}\right]\right)
\end{aligned}
$$

Substituting $n=0$ both sides,

$$
\begin{array}{rlr}
& y[0]=2 \times\left(\frac{1}{2}\right)^{1} u[1]-\left(\frac{1}{2}\right)^{0} u[0]-\left(\frac{1}{2}\right)^{-2} u(-2) \\
y[0]=2 \times \frac{1}{2}-1-0 & (\because u[-2]=0) \\
\therefore \quad & y[0]=1-1=0 &
\end{array}
$$

Hence, the value of $y[0]$ is 0 .

Consider the signal $x[n]=2^{n-1} u[-n+2]$ and $y[n]=2^{-n+2} u[n+1]$. Where $u[n]$ is the unit step sequence. Let $X\left(e^{j \omega}\right)$ and $Y\left(e^{j \omega}\right)$ be the discrete time Fourier transform of $x[n]$ and $y[n]$ respectively. The value of integral

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} X\left(e^{j \omega}\right) Y\left(e^{-j \omega}\right) d \omega
$$

(round off to one decimal places) is \qquad .
Ans. 8
Sol. Given : $x[n]=2^{n-1} u[-n+2] \xrightarrow{D T F T} X\left(e^{j \omega}\right)$

$$
y[n]=2^{-n+2} u[n+1] \xrightarrow{D T F T} Y\left(e^{j \omega}\right)
$$

We have to evaluate the integral,

$$
\begin{equation*}
I=\frac{1}{2 \pi} \int_{0}^{2 \pi} X\left(e^{j \omega}\right) Y\left(e^{-j \omega}\right) d \omega \tag{i}
\end{equation*}
$$

If $p[n] \stackrel{\text { DTFT }}{\longleftrightarrow} P\left(e^{j \omega}\right)$, then from synthesis equation of DTFT

$$
\begin{align*}
& p[n]=\frac{1}{2 \pi} \int_{0}^{2 \pi} P\left(e^{j \omega}\right) e^{j \omega n} d \omega \\
& p[0]=\frac{1}{2 \pi} \int_{0}^{2 \pi} P\left(e^{j \omega}\right) d \omega \tag{ii}
\end{align*}
$$

From equation (i) and (ii),
If $P\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) Y\left(e^{-j \omega}\right)$ then, $I=p[0]$
If $y[n] \longleftrightarrow Y\left(e^{j \omega}\right)$
Applying time reversal property,

$$
y[-n] \longleftrightarrow Y\left(e^{-j \omega}\right)
$$

Let $y[-n]=z[n]$, then using convolution property,

$$
x[n] \otimes z[n] \longleftrightarrow X\left(e^{j \omega}\right) \cdot Y\left(e^{-j \omega}\right)=P\left(e^{j \omega}\right)
$$

So,

$$
p[n]=x[n] \otimes z[n]
$$

Expend convolution as,

$$
p[n]=\sum_{k=-\infty}^{\infty} x[k] z[n-k]
$$

Here,

$$
\begin{aligned}
& x[n]=2^{n-1} u[-n+2] \\
& x[k]=2^{k-1} u[-k+2]
\end{aligned}
$$

$$
\begin{aligned}
& z[n]=y[-n]=2^{n+2} u[-n+1] \\
& z[n-k]=2^{n-k+2} u[-n+k+1] \\
\therefore \quad & p[n]=\sum_{k=-\infty}^{\infty} 2^{k-1} u[-k+2] \cdot 2^{n-k+2} u[-n+k+1]
\end{aligned}
$$

As required integral, $I=\left.p[n]\right|_{n=0}=p[0]$

$$
p[0]=\sum_{k=-\infty}^{\infty} 2^{k-1} u[-k+2] \cdot 2^{-k+2} u[k+1]
$$

Sequence, $u[-k+2]=1$ only for $-\infty<k<2$, thus modifying limit of summation

$$
\begin{aligned}
& p[0]=\sum_{k=-\infty}^{2} 2^{k-1-k+2} \cdot 1 \cdot u[k+1] \\
& p[0]=\sum_{k=-\infty}^{2} 2 u[k+1]
\end{aligned}
$$

Sequence $u[k+1]=1$ only for $-1<k<\infty$, thus modifying lower limit of summation.

$$
\begin{aligned}
& p[0]=\sum_{k=-1}^{2} 2 \times 1=2 \sum_{k=-1}^{2}(1)^{k} \\
& p[0]=2[1+1+1+1]=8
\end{aligned}
$$

So,

$$
\begin{aligned}
& I=\frac{1}{2 \pi} \int_{0}^{2 \pi} X\left(e^{j \omega}\right) \cdot Y\left(e^{-j \omega}\right) d \omega=\frac{1}{2 \pi} \int_{0}^{2 \pi} P\left(e^{j \omega}\right) d \omega \\
& I=p[0]=8
\end{aligned}
$$

Hence, the value of given integral is 8 .

Question 28

Signals \& Systems (1M)

Consider two 16 point sequences $x[n]$ and $h[n]$. Let the linear convolution $x[n]$ and $h[n]$ be denoted by $y[n]$, while $z[n]$ denotes the 16 point inverse discrete Fourier transform (IDFT) of the product of the 16 point DFTs of $x[n]$ and $h[n]$. The value(s) of k for which $z[k]=y[k]$ is/are
(A) $k=0,1,2, \ldots \ldots, 15$
(B) $k=0$
(C) $k=15$
(D) $k=0$ or 15

Ans. C
Sol. Given : $x[n]$ and $h[n]$ are 16 point sequences
and

$$
\begin{equation*}
y[n]=x[n] \otimes h[n] \tag{i}
\end{equation*}
$$

Also, $\quad z[n]=\operatorname{IDFT}[X(k) \cdot H(k)]$
Where, $\quad x[n] \stackrel{D F T}{\stackrel{D 6 p o i n t}{ }} X(k)$

$$
h[n] \underset{16 F \text { point }}{\stackrel{D F T}{\leftrightarrows}} H(k)
$$

From circular convolution property of DFT.

$$
x[n] ® h[n] \stackrel{D F T}{\longleftrightarrow} X(k) \cdot H(k)
$$

So,

$$
\begin{equation*}
z[n]=x[n] \circlearrowleft h[n] \tag{ii}
\end{equation*}
$$

We have to find value of k, for which $y(k)=z(k)$.
i.e., value of n, for which linear and circular convolutions of 16 point sequences $x[n]$ and $h[n]$ are same.

From definitions of linear convolution,

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k]
$$

From definitions of circular convolution,

$$
z[n]=\sum_{k=0}^{N-1} x(k) \cdot h[(n-k)]_{N} \quad \text { where, } N=16
$$

Assuming two 16 point sequences as,

$$
\begin{aligned}
& x[n]=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\} \\
& h[n]=\{\underset{\uparrow}{a}, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p\}
\end{aligned}
$$

So, linear convolution $y[n]$ is,

$$
\begin{align*}
& y[n]=\sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k] \\
& y[0]=\sum_{k=-\infty}^{\infty} x[k] \cdot h[-k] \\
& x[k]=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\} \\
& h[-k]=\{p, o, n, m, l, k, j, i, h, g, f, e, d, c, b, \underset{\uparrow}{a}\} \\
& \therefore \quad y[0]=(1 \times a)+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0 \\
& y[0]=a \tag{i}
\end{align*}
$$

From 16 point circular convolution,

$$
\begin{aligned}
& z[n]=\sum_{K=0}^{15} x(k) \cdot h[(n-k)]_{16} \\
& z[0]=\sum_{K=0}^{15} x(k) \cdot h[(-k)]_{16}
\end{aligned}
$$

Thus, $z(0)=(a \times 1)+(b \times 2)+(c \times 3)+(d \times 4)+(e \times 5)+(f \times 6)+(g \times 7)$

$$
\begin{align*}
+(h \times 8)+(i \times 9)+(j \times 10)+(k \times 11) & +(l \times 12)+(m \times 13)+(n \times 14) \\
& +(o \times 15)+(p \times 16) \quad \ldots(\mathrm{ii}) \tag{ii}
\end{align*}
$$

From equations (i) and (ii),

$$
z(0) \neq y(0)
$$

So, $z(k)=y(k)$ is not satisfied for $k=0$ and hence options (A), (B) and (D) are wrong.
Now we are choosing option (C) and verify it as follows,
Linear convolution, $y[n]=\sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k]$
Taking $n=15, y[15]=\sum_{k=-\infty}^{\infty} x[k] \cdot h[15-k]$
To find $h[15-k]$, shifting sequence $h(-k) 15$ times towards right hand side.
So,

$$
x(k)=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\}
$$

$$
h[-k]=\{p, o, n, m, l, k, j, i, h, g, f, e, d, c, b, \underset{\uparrow}{a}\}
$$

$$
h[15-k]=\{p, o, n, m, l, k, j, i, h, g, f, e, d, c, b, a\}
$$

$$
\therefore \quad y(15)=p+2 o+3 n+4 m+5 l+6 k+7 j+8 i+9 h+10 g+11 f+12 e
$$

$$
\begin{equation*}
+13 d+14 c+15 b+16 a \tag{iii}
\end{equation*}
$$

Circular convolution,

$$
\begin{aligned}
& z[n]=\sum_{k=0}^{15} x(k) \cdot h[(n-k)]_{16} \\
& z[15]=\sum_{k=0}^{15} x(k) \cdot h[(15-k)]_{16}
\end{aligned}
$$

To find $h[(15-k)]_{16}$, rotating $h[(-k)]_{16}$ in anticlockwise direction 15 times. So,

From equation (iii) and (iv),

$$
y(15)=z(15)
$$

Hence, $y(k)=z(k)$ for $k=15$ is satisfied.
Hence, the correct option is (C).

Question 29

For the transistor M_{1} in the circuit shown in the figure, $\mu_{n} C_{o x}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $(W / L)=10$ where μ_{n} is the mobility of electron, $C_{o x}$ is the oxide capacitance per unit area, W is the width and L is the length.

The channel length modulation coefficient is ignored. If the gate-to-source voltage $V_{G S}$ is 1 V to keep the transistor at the edge of saturation, then the threshold voltage of the transistor (rounded off to one decimal place) is \qquad V.

Ans. 0.5
Sol. Given :
(i) $\mu_{n} C_{o x}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$
(ii) $\frac{W}{L}=10$
(iii) $V_{G S}=1 \mathrm{~V}$

Drain to source current ($I_{D S}$) when N -MOS is saturation is given by,

$$
\begin{aligned}
& I_{D}=I_{D S}=\frac{\mu_{n} C_{o x}}{2} \times \frac{W}{L}\left(V_{G S}-V_{T}\right)^{2} \quad \text { (For NMOS in saturation) } \\
& I_{D}=I_{D S}=\frac{100 \times 10^{-6}}{2} \times 10\left(1-V_{T}\right)^{2} \\
& I_{D}=\frac{1}{2}\left(1-V_{T}\right)^{2} \mathrm{~mA}
\end{aligned}
$$

Apply KVL at outer loop of N-MOS,

$$
V_{D S}=3-20 \times I_{D S}
$$

Put the value of $I_{D S}$, in above equation we get

$$
\begin{aligned}
& V_{D S}=3-\frac{20}{2}\left(1-V_{T}\right)^{2} \\
& V_{D S}=3-10\left(1-V_{T}\right)^{2}
\end{aligned}
$$

MOSFET operates in saturation if over drive voltage $V_{D S} \geq V_{O V}$ as shown below,

So, $\quad V_{D S} \geq V_{O V}=V_{G S}-V_{T}$
So, we take, $\quad V_{D S}=V_{G S}-V_{T}$

$$
\begin{aligned}
& V_{G S}-V_{T}=3-10\left(1-V_{T}\right)^{2} \\
& 1-V_{T}=3-10\left(1-V_{T}\right)^{2}
\end{aligned}
$$

Let,

$$
1-V_{T}=x
$$

$$
3-10 x^{2}=x
$$

$$
10 x^{2}+\times-3 x=0
$$

We get, $\quad x=-\frac{1 \pm \sqrt{1+120}}{20}$

$$
\begin{aligned}
& x & =\frac{1 \pm 11}{20} \\
\therefore \quad & x & =0.5 \text { and }-0.6
\end{aligned}
$$

When $\boldsymbol{x}=\mathbf{0 . 5}$	When $\boldsymbol{x}=\mathbf{- 0 . 6}$
$1-V_{T}=0.5$	$1-V_{T}=-0.6$
$V_{T}=0.5 \mathrm{~V}$	$V_{T}=1.6 \mathrm{~V}$

For MOSFET to be in saturation
If

$$
V_{T}<V_{G S}
$$

i.e.,

$$
V_{T}<1
$$

$\therefore \quad V_{T}=0.5 \mathrm{~V}$
Hence, the threshold voltage of the transistor to be at the edge of saturation is $\mathbf{0 . 5} \mathbf{V}$.

Key Point

If we choose $V_{T}=1.6 \mathrm{~V}$, then the MOSFET goes in cut-off region, because $V_{T}>V_{G S}$.

A unity feedback system that uses proportional-integral (PI) control is shown in the figure.

The stability of the overall system is controlled by tuning the PI control parameters K_{P} and K_{I}. The maximum value of K_{I} that can be chosen so as to keep the overall system stable or in the worst case, marginally stable (round off to three decimal places) is \qquad .
Ans. 3.125
Sol. Given unity feedback system is shown below,

Characteristic equation of unity feedback system is,

$$
\begin{aligned}
& 1+G(s)=0 \\
& 1+\left(K_{P}+\frac{K_{I}}{s}\right)\left(\frac{2}{s^{3}+4 s^{2}+5 s+2}\right)=0 \\
& 1+\frac{K_{P} s+K_{I}}{s} \frac{2}{s^{3}+4 s^{2}+5 s+2}=0 \\
& s\left(s^{3}+4 s^{2}+5 s+2\right)+2 s K_{P}+2 K_{I}=0 \\
& s^{4}+4 s^{3}+5 s^{2}+2 s+2 s K_{P}+2 K_{I}=0 \\
& s^{4}+4 s^{3}+5 s^{2}+\left(2+2 K_{p}\right) s+2 K_{I}=0
\end{aligned}
$$

From the above equation it is clear that, the sufficient condition for the system to be stable is,

$$
K_{P}>(-1) \text { and } K_{I}>0
$$

The Routh table for above characteristic equation,
s^{4}

s^{3}	1
4	
s^{1}	
s^{0}	
$\frac{\left(\frac{18-2 K_{P}}{4}\right.}{\left.\frac{\left(18-2 K_{P}\right.}{4}\right)\left(2+2 K_{P}\right)-8 K_{I}}$	
$\frac{18-2 K_{P}}{4}$	

$2 K_{I}$

For stability or marginal stability of given system, the coefficient of first column of Routh table should be positive or same sign so,
(i) $\frac{18-2 K_{P}}{4}>0$

$$
K_{P}<9
$$

Thus, K_{P} must varies from, $(-1)<K_{P}<9$
(ii) $\frac{\left(\frac{18-2 K_{P}}{4}\right)\left(2+2 K_{P}\right)-8 K_{I}}{\frac{18-2 K_{P}}{4}}=0$
$2+2 K_{P}-\frac{8 K_{I} \times 4}{18-2 K_{P}}=0$
$1+K_{P}=\frac{16 K_{I}}{18-2 K_{P}}$
$1+K_{P}=\frac{8 K_{I}}{9-K_{P}}$
$K_{I}=\frac{\left(1+K_{P}\right)\left(9-K_{P}\right)}{8}$
Here, K_{I} is a function of K_{P}.
For maxima or minima, $\frac{d}{d K_{P}} K_{I}=0$

$$
\begin{aligned}
& \frac{d}{d K_{P}}\left[\frac{\left(1+K_{P}\right)\left(9-K_{P}\right)}{8}\right]=0 \\
& \frac{1}{8}\left[\left(1+K_{P}\right)(-1)+9-K_{P}\right]=0 \\
& 9-K_{P}=1+K_{P} \\
& 2 K_{P}=8 \\
& K_{P}=4
\end{aligned}
$$

Now, double derivative of K_{I} is,

$$
\frac{d^{2}}{d K_{P}^{2}} K_{I}=-\frac{1}{4}<0
$$

It means, K_{I} has maxima at $K_{P}=4$.

Thus, maximum value of K_{I} at $K_{P}=4$ will be,

$$
\left[K_{I}\right]_{\max }=\frac{(1+4)(9-4)}{8}=3.125
$$

Ans.
Question 31
Engineering Mathematics (2M)
A box contains the following three coins
(i) A fair coin with head on one face and tail on other face.
(ii) A coin with heads on both faces.
(iii) A coin with tail on both faces.

A coin is picked randomly from box and tossed. Out of the two remaining coins in the box, one coin is then picked randomly and tossed. If the first toss result in a head, the probability of getting a head in the second toss is
(A) $2 / 5$
(B) $1 / 3$
(C) $1 / 2$
(D) $2 / 3$

Ans. B
Sol. Method 1 :
There are three types of coins
(i) Unfair coin with head on both side ($U H$)
(ii) Unfair coin with tail on both side (UT)
(iii) Fair coin (F)

$P(A)=$ probability for head in first throw
$P(B)=$ probability for head in second throw

We need to find $P\left(\frac{B}{A}\right)=\frac{P(A \cap B)}{P(A)}=\frac{\left(\frac{1}{3} \times \frac{1}{2} \times \frac{1}{2}\right)+\left(\frac{1}{3} \times \frac{1}{2} \times \frac{1}{2}\right)}{\frac{1}{3}+\left(\frac{1}{3} \times \frac{1}{2}\right)}$
$P\left(\frac{B}{A}\right)=\frac{\frac{1}{12}+\frac{1}{12}}{\frac{3}{6}}=\frac{\frac{1}{6}}{\frac{3}{6}}=\frac{1}{3}$
Hence, the correct option is (B).

Method 2 :

Step 1 : Find the probability of selecting a coin and getting heads after tossing it

$$
\begin{align*}
& P(\text { coin } 1 \text { with head and tail })=\frac{1}{3} \times \frac{1}{2}=\frac{1}{6} \tag{i}\\
& P(\text { coin } 2 \text { with two heads })=\frac{1}{3} \times 1=\frac{1}{3} \tag{ii}\\
& P(\text { coin } 3 \text { with two tails })=\frac{1}{3} \times 0=0 \tag{iii}
\end{align*}
$$

Step 2 : Find the probability of getting heads in second toss,
If equation (i) happens, then probability of getting heads in second toss $=1$
If equation (ii) happens, then probability of getting heads in second toss $=\frac{1}{2}$
If equation (iii) happens, then probability of getting heads in second toss $=0$.
\therefore Required probability $=\frac{1}{6} \times 1+\frac{1}{3} \times \frac{1}{2}=\frac{1}{6}+\frac{1}{6}=\frac{1}{3}$
Hence, the correct option is (B).
Question 32
Engineering Mathematics (1M)
Consider the differential equation given below

$$
\frac{d y}{d x}+\frac{x}{1-x^{2}} y=x \sqrt{y}
$$

The integrating factor of differential equation is
(A) $\left(1-x^{2}\right)^{-\frac{3}{4}}$
(B) $\left(1-x^{2}\right)^{-\frac{1}{4}}$
(C) $\left(1-x^{2}\right)^{-\frac{3}{2}}$
(D) $\left(1-x^{2}\right)^{-\frac{1}{2}}$

Ans. B
Sol. Given : First order deferential equation,

$$
\frac{d y}{d x}+\frac{x}{1-x^{2}} y=x \sqrt{y}
$$

$$
\frac{1}{\sqrt{y}} \frac{d y}{d x}+\frac{x}{1-x^{2}}\left(\frac{y}{\sqrt{y}}\right)=x
$$

Dividing both side with \sqrt{y}

$$
\begin{align*}
& y^{-\frac{1}{2}} \frac{d y}{d x}+\frac{x}{1-x^{2}} y \cdot y^{-\frac{1}{2}}=x \\
& y^{-\frac{1}{2}} \frac{d y}{d x}+\frac{x}{1-x^{2}} y^{\frac{1}{2}}=x \tag{i}
\end{align*}
$$

Let, $\quad y^{\frac{1}{2}}=t$
Differentiating equation (ii), both side with respect to x,

$$
\begin{align*}
& \frac{1}{2} y^{-\frac{1}{2}} \frac{d y}{d x}=\frac{d t}{d x} \\
& y^{-\frac{1}{2}} \frac{d y}{d x}=2 \frac{d t}{d x} \tag{iii}
\end{align*}
$$

Putting equation (iii) into equation (i),

$$
\begin{align*}
& 2 \frac{d t}{d x}+\frac{x}{1-x^{2}} t=x \\
& \frac{d t}{d x}+\frac{1}{2}\left[\frac{x}{\left(1-x^{2}\right)}\right] t=\frac{x}{2} \tag{iv}
\end{align*}
$$

Compare equation (iv) with Labntiz first order differential equation,

$$
\frac{d t}{d x}+P t=Q
$$

So,

$$
P=\frac{1}{2}\left[\frac{x}{1-x^{2}}\right], Q=\frac{x}{2}
$$

Integrating factor (I.F) is given by,

$$
\begin{aligned}
& \text { I.F }=e^{\int P d x}=e^{\frac{1}{2} \int \frac{x}{1-x^{2}} d x} \\
& \text { I.F }=e^{-\frac{1}{4} \int \frac{-2 x}{1-x^{2}} d x} \\
& \text { I.F }=e^{-\frac{1}{4} \log _{e}\left(1-x^{2}\right)} \\
& \text { I.F }=e^{\log _{e}\left(1-x^{2}\right)^{-1 / 4}} \\
& \text { I.F }=\left(1-x^{2}\right)^{-\frac{1}{4}}
\end{aligned}
$$

Hence, the correct option is (B).

Addressing of a $32 \mathrm{~K} \times 16$ memory is realized using a single decoder. The minimum number of AND gate required for the decoder is
(A) 2^{8}
(B) 2^{32}
(C) 2^{15}
(D) 2^{19}

Ans. C
Sol. Given :
Addressing of memory $=32 \mathrm{~K} \times 16$
Addressing of memory $=2^{5} \times 2^{10} \times 16$

$$
\left(\because K=2^{10}\right)
$$

Addressing of memory $=2^{15} \times 16$
So $32 \mathrm{~K} \times 16$ memory needs 15 address lines
So it will need decoder of size 15×2^{15}, which will need 2^{15} AND gates.
Hence, the correct option is (C).
Question 34
Engineering Mathematics (2M)
A real 2×2 non-singular matrix A with repeated Eigen value is given as

$$
A=\left[\begin{array}{cc}
x & -3.0 \\
3.0 & 4.0
\end{array}\right]
$$

where x is a real positive number. The value of x (round off to one decimal place) is \qquad .
Ans. 10
Sol. Given : $A=\left[\begin{array}{cc}x & -3.0 \\ 3.0 & 4.0\end{array}\right]$
It is given that Eigen value of matrix A is repeated
Let the repeated Eigen values are

$$
\begin{aligned}
& \lambda_{1}=\lambda \\
& \lambda_{2}=\lambda
\end{aligned}
$$

We know that, sum of the Eigen value of matrix $[A]$ is equal to trace of matrix
$\lambda_{1}+\lambda_{2}=\operatorname{Trace}(A)=$ Sum of diagonal elements of matrix $[A]$
$\lambda+\lambda=x+4$
$2 \lambda=x+4$
$\lambda=\frac{x+4}{2}$
We know that, product of Eigen value is equal to determinant of matrix [A]

$$
\begin{aligned}
& \lambda_{1} \times \lambda_{2}=|A| \\
& \lambda \times \lambda=4 x+9
\end{aligned}
$$

$$
\begin{equation*}
\lambda^{2}=4 x+9 \tag{ii}
\end{equation*}
$$

Putting $\lambda=\frac{x+4}{2}$ into equation (ii)

$$
\begin{aligned}
& \left(\frac{x+4}{2}\right)^{2}=4 x+9 \\
& x^{2}+8 x+16=16 x+36 \\
& x^{2}-8 x-20=0 \\
& x^{2}-10 x+2 x-20=0 \\
& x(x-10)+2(x-10)=0 \\
& (x-10)(x+2)=0 \\
& x=10, x=-2
\end{aligned}
$$

It is given that x is positive real number, therefore we will select $x=10$.
Hence, the correct answer is 10 .

Question 35

Engineering Mathematics (1M)
Two continuous random variables X and Y are related as

$$
Y=2 X+3
$$

Let $\sigma_{X}^{2}, \sigma_{Y}^{2}$ denote the variance of X and Y respectively. The variance are related as,
(A) $\sigma_{Y}^{2}=2 \sigma_{X}^{2}$
(B) $\sigma_{Y}^{2}=4 \sigma_{X}^{2}$
(C) $\sigma_{Y}^{2}=5 \sigma_{X}^{2}$
(D) $\sigma_{Y}^{2}=25 \sigma_{X}^{2}$

Ans. B
Sol. Given : $\operatorname{Var}[X]=\sigma_{X}^{2}$

$$
\begin{aligned}
& \operatorname{Var}[Y]=\sigma_{Y}^{2} \\
& Y=2 X+3
\end{aligned}
$$

Taking variance on both sides,

$$
\begin{align*}
& \operatorname{Var}(Y)=\operatorname{Var}[2 X+3] \\
& \operatorname{Var}(Y)=\operatorname{Var}(2 X)+\operatorname{Var}(3) \tag{i}
\end{align*}
$$

Since, from the property of variance, for any constant " a "
$\operatorname{Var}[a X]=a^{2} \operatorname{Var}[X]$

$$
\operatorname{Var}[a]=0
$$

So, equation (i) becomes as,

$$
\begin{aligned}
& \operatorname{Var}(Y)=2^{2} \operatorname{Var}(X)+0 \\
& \operatorname{Var}(Y)=4 \operatorname{Var}(X) \\
& \sigma_{Y}^{2}=4 \sigma_{X}^{2}
\end{aligned}
$$

Hence, the correct option is (B)

Key Point

(i) $\operatorname{Var}[a X]=a^{2} \operatorname{Var}[X]$
(ii) $\operatorname{Var}[a]=0$

Where, a is constant.

Question 36

Engineering Mathematics (2M)
Consider the integral

$$
\oint_{C} \frac{\sin x}{x^{2}\left(x^{2}+4\right)} d x
$$

where C is the counter clockwise oriented circle defined as $|x-i|=2$. The value of the integral is
(A) $-\frac{\pi}{8} \sin 2 i$
(B) $\frac{\pi}{8} \sin 2 i$
(C) $-\frac{\pi}{4} \sin 2 i$
(D) $\frac{\pi}{4} \sin 2 i$

Ans. * (According to IIT Bombay its Answer A)
Sol. Given : $f(x)=\frac{\sin x}{x^{2}\left(x^{2}+4\right)}$
Poles of $f(x)$ are given by,

$$
\begin{array}{ll}
x^{2}\left(x^{2}+4\right)=0 & \\
x_{1}=0 & \text { (multiple pole of order 2) } \\
x_{2}=2 i & \text { (simple pole) } \\
x_{3}=-2 i & \text { (simple pole) }
\end{array}
$$

Contour C is given by $|x-i|=2$

$$
\begin{aligned}
& |a+i b-i|=2 \\
& \sqrt{a^{2}+(b-1)^{2}}=2
\end{aligned}
$$

Squaring both sides

$$
a^{2}+(b-1)^{2}=4
$$

So, the contour C represent a circle with centre $(0,1)$ and radius 2 .

Pole $x_{1}=0$ and $x_{2}=2 i$ lie inside the circle but pole $x_{3}=-2 i$ lies outside of the circle.

Thus we will find residue at pole $x_{1}=0$ and $x_{2}=2 i$.
Residue of $f(x)$ with multiple pole at $x=a$ with order m is given by,

$$
\left.R(x)\right|_{x=a}=\frac{1}{(m-1)!}\left[\frac{d^{m-1}}{d x^{m-1}}(x-a)^{m} f(x)\right]_{x=a}
$$

Residue at $x_{1}=0$ is given by,

$$
\begin{aligned}
& R\left(x_{1}\right)=\frac{1}{(2-1)!}\left[\frac{d}{d x} x^{2} \frac{\sin x}{x^{2}(x+4)}\right]_{x=0} \\
& \left.R\left(x_{1}\right)=\frac{d}{d x}\left[\frac{\sin x}{\left(x^{2}+4\right)}\right]_{x=0}\right]_{x=0} \\
& R\left(x_{1}\right)=\left[\frac{\left(x^{2}+4\right) \cos x-2 x \sin x}{\left(x^{2}+4\right)^{2}}\right]_{1} \\
& R\left(x_{1}\right)=\frac{4-0}{16}=\frac{1}{4}
\end{aligned}
$$

Residue at $x_{2}=2 i$ is given by

$$
\begin{aligned}
& R\left(x_{2}\right)=\left[\frac{(x-2 i) \sin x}{x^{2}(x+2 i)(x-2 i)}\right]_{x=2 i} \\
& R\left(x_{2}\right)=\frac{\sin 2 i}{(2 i)^{2} \times 4 i}=\frac{-\sin 2 i}{16 i}
\end{aligned}
$$

By residue theorem

$$
\begin{aligned}
& \oint_{C} f(x) d x=2 \pi i \times\left[\Sigma R\left(x_{i}\right)\right] \\
& \oint_{C} \frac{\sin x}{x^{2}\left(x^{2}+4\right)}=2 \pi i\left[R\left(x_{1}\right)+R\left(x_{2}\right)\right] \\
& \oint_{C} \frac{\sin x}{x^{2}\left(x^{2}+4\right)}=2 \pi i\left[\frac{1}{4}-\frac{\sin 2 i}{16 i}\right] \\
& \oint_{C} \frac{\sin x}{x^{2}\left(x^{2}+4\right)}=\frac{\pi i}{2}-\frac{\pi \sin 2 i}{8}
\end{aligned}
$$

Hence, none of the option is matching.
This question is not in proper form as per their options, so this question must be considered as marks to all (MTA).

Question 37

Digital Electronics (1M)

If (1235) $)_{x}=(3033)_{y}$ where x and y indicate bases of the corresponding numbers, then
(A) $x=7$ and $y=5$
(B) $x=8$ and $y=6$
(C) $x=6$ and $y=4$
(D) $x=9$ and $y=7$

Ans. B

Sol. Given : (1235) ${ }_{x}=(3033)_{y}$
Converting both numbers into decimal number as,

$$
\begin{aligned}
& x^{3}+2 x^{2}+3 x+5=3 y^{3}+3 y+3
\end{aligned}
$$

Only option (C) $x=8, y=6$, satisfy the above equation.
Hence, the correct option is (B).
Question 38
Communications System (1M)
The autocorrelation function $R_{X}(\tau)$ of a wide-sense stationary random process $X(t)$ is shown in the figure,

The average power of $X(t)$ is \qquad .
Ans. 2
Sol. Method 1 :
Given, autocorrelation function $R_{X}(\tau)$ of wide sense stationary random process $X(t)$ is shown in figure.

Here, $R_{X}(\tau=0)=2$
Average power of $X(t)$ is given as mean square value of $X(t)$, i.e.,

$$
\begin{equation*}
P_{x}=E\left[X^{2}(t)\right]=E[X(t) X(t)] \tag{i}
\end{equation*}
$$

Autocorrelation function of $X(t)$ in defined as,

$$
\begin{align*}
& R_{X}(\tau)=E[X(t) \cdot X(t+\tau)] \\
& R_{X}(\tau=0)=E[X(t) X(t+0)] \\
& R_{X}(0)=E[X(t) X(t)] \tag{ii}
\end{align*}
$$

From equations (i) and (ii),

$$
P_{x}=R_{X}(0)=2 \mathrm{~W}
$$

Method 2 :

Given $R_{X}(\tau)$ can be represented as,

$$
R_{X}(\tau)=2 \operatorname{tri}\left(\frac{\tau}{2}\right)
$$

Power spectral density of $X(t)$ is related to $R_{X}(\tau)$ as,

$$
\begin{array}{ll}
& S_{X}(f)=\text { F.T. }\left[R_{X}(\tau)\right] \\
& 2 \text { tri }\left(\frac{\tau}{2}\right) \stackrel{\text { F.T. }}{\longleftrightarrow} 4 \operatorname{sinc}^{2}(2 f) \\
\therefore \quad & S_{X}(f)=4 \operatorname{sinc}^{2}(2 f)
\end{array}
$$

$\therefore \quad$ Average power of $X(t)$

$$
\begin{align*}
& P_{x}=\int_{-\infty}^{\infty} S_{X}(f) d f=4 \int_{-\infty}^{\infty} \operatorname{sinc}^{2}(2 f) d f \\
& P_{x}=4 \cdot[\text { Energy of } \operatorname{sinc}(2 f)] \tag{iii}
\end{align*}
$$

From standard result,

$$
\text { Energy of } \operatorname{sinc}(f)=1
$$

Using scaling property,

$$
\text { Energy of } \operatorname{sinc}(2 f)=\frac{1}{2}
$$

From equation (iii),

$$
P_{x}=4 \times \frac{1}{2}=2 \mathrm{~W}
$$

Hence, average power of $X(t)$ is 2 W .

Question 39

Communications System (2M)

A message signal having peak-to-peak value of 2 V , root mean square value of 0.1 V and bandwidth of 5 kHz is sampled and fed to a pulse code modulation (PCM) system that uses a uniform quantizer. The PCM output is transmitted over a channel that can support a maximum transmission rate of 50 kbps . Assuming that the quantization error is uniformly distributed, the maximum signal to quantization noise ratio that can be obtained by the PCM system (rounded off to two decimal places) is \qquad .
Ans. 30.72
Sol. Given : Peak to peak value of message signal $m(t)$

$$
V_{P-P}=V_{H}-V_{L}=2 \mathrm{~V}
$$

RMS value of message signal, $m(t)=0.1 \mathrm{~V}$
Bandwidth of message signal or maximum frequency component of $m(t)$

$$
f_{m}=5 \mathrm{kHz}
$$

Bit rate of PCM system $R_{b}=50 \mathrm{kbps}$
$\therefore \quad$ Power in message signal $m(t)$

$$
P_{s}=(\mathrm{RMS} \text { value })^{2}=(0.1)^{2}=0.01 \mathrm{~W}
$$

As nothing in mentioned about sampling frequency, so taking Nyquist rate of sampling, i.e.

$$
f_{s}=2 f_{m}=10 \mathrm{kHz}
$$

Bit rate of PCM is, $R_{b}=n f_{s}=50 \mathrm{kbps}$

$$
(\because n=\text { Number of bits })
$$

$\therefore \quad n=\frac{R_{b}}{f_{s}}=5$
Given that the PCM system uses uniform quantization and quantization error is uniformly distributed, so
Quantization noise power is given as,

$$
P_{n q}=\frac{s^{2}}{12}
$$

Where, $s=$ Step size $=\frac{V_{P-P}}{L}$

$$
L=\text { Number of level }=2^{n}
$$

So, $\quad P_{n q}=\frac{\left(\frac{V_{P}-V_{P}}{L}\right)^{2}}{12}$

$$
P_{n q}=\frac{\left(\frac{V_{H}-V_{L}}{2^{n}}\right)^{2}}{12}=\frac{\left(\frac{2}{32}\right)^{2}}{12}=\frac{4}{32 \times 32 \times 12}=\frac{1}{3072}
$$

So, the signal to quantization noise power ratio,

$$
\begin{aligned}
& S N_{q} R=\frac{P_{s}}{P_{n q}}=\frac{0.01}{\frac{1}{3072}} \\
& S N_{q} R=30.72
\end{aligned}
$$

Hence, the value of signal to quantization noise ratio is 30.72 .

Question 40

Communications System (2M)

Consider a polar non-return to zero (NRZ) waveform, using +2 V and -2 V for representing binary ' 1 ' and ' 0 ' respectively, is transmitted in the presence of additive zero-mean white Gaussian noise with variance $0.4 \mathrm{~V}^{2}$. If the a priori probability of transmission of a binary ' 1 ' is 0.4 , the optimum threshold voltage for a maximum a posteriori (MAP) receiver (rounded off to two decimal places) is \qquad V.

Ans. 0.04

Sol. Given a polar non-return to zero waveform, using +2 V and -2 V for representing binary ' 1 ' and ' 0 ' respectively is transmitted in presence of white Gaussian noise with variance $0.4 \mathrm{~V}^{2}$.

$$
P(1)=0.4, \quad P(0)=1-P(1)=0.6
$$

Average probability of error in given as,

$$
\begin{aligned}
& P_{e}=P(0) P\left(\frac{1}{0}\right)+P(1) P\left(\frac{0}{1}\right) \\
& P_{e}=P(0) \int_{V_{t h}}^{\infty} f\left(\frac{z}{0}\right) d z+P(1) \int_{-\infty}^{V_{t h}} f\left(\frac{z}{1}\right) d z
\end{aligned}
$$

For probability of error to be minimum, $\frac{d P_{e}}{d z}=0$.

$$
\begin{aligned}
& P(0)\left[f\left(\frac{z}{0}\right)\right]_{V_{t h}}^{\infty}+P(1)\left[f\left(\frac{z}{1}\right)\right]_{-\infty}^{V_{t h}}=0 \\
& -\left.P(0) f\left(\frac{z}{0}\right)\right|_{z=V_{t h}}+\left.P(1) f\left(\frac{z}{1}\right)\right|_{V_{t h}}=0 \quad\left[\text { As }\left.f\left(\frac{z}{0}\right)\right|_{z=\infty}=0,\left.f\left(\frac{z}{1}\right)\right|_{z=-\infty}=0\right] \\
& \left.P(0) f\left(\frac{z}{0}\right)\right|_{z=V_{t h}}=\left.P(1) f\left(\frac{z}{1}\right)\right|_{z=V_{t h}} \\
& \left.P(0) \cdot \frac{1}{\sqrt{2 \pi \sigma_{n}^{2}}} e^{-\frac{\left(z-a_{2}\right)^{2}}{2 \sigma_{n}^{2}}}\right|_{z=V_{t h}}=\left.P(1) \cdot \frac{1}{\sqrt{2 \pi \sigma_{n}^{2}}} e^{-\frac{\left(z-a_{1}\right)^{2}}{2 \sigma_{n}^{2}}}\right|_{z=V_{t h}}
\end{aligned}
$$

where, given $a_{1}=+2 \mathrm{~V}, a_{12}=-2 \mathrm{~V}$

$$
\frac{P(0)}{P(1)}=e^{-\frac{\left(z-a_{2}\right)^{2}}{2 \sigma_{n}^{2}}}+e^{-\frac{\left(z-a_{2}\right)^{2}}{2 \sigma_{n}^{2}}}
$$

On solving, the optimum threshold for MAP receiver is obtained as,

$$
\begin{equation*}
V_{t h}=\frac{a_{1}+a_{2}}{2}+\frac{\sigma_{n}^{2}}{a_{1}-a_{2}} \ln \left(\frac{P(0)}{P(1)}\right) \tag{i}
\end{equation*}
$$

Equation (i) may be used as standard equation to find optimum threshold for minimum probability of error $\left(P_{e}\right)_{\min }$ in MAP receiver: Also, if $P(0)=P(1)$ then $V_{t h}=\frac{a_{1}+a_{2}}{2}$.
Substituting value of $a_{1}, a_{2}, P(0)$ and $P(1)$ in equation (i),

$$
\begin{aligned}
& V_{t h}=\frac{2+(-2)}{2}+\frac{0.4}{2-(-2)} \ln \left(\frac{0.6}{0.4}\right) \\
& V_{t h}=\frac{1}{10} \ln (1.5)=0.0405
\end{aligned}
$$

Hence, the minimum probability of error occurs for the optimum threshold of $V_{t h}=0.0405 \mathrm{~V}$.
Question 41
Communications System (2M)
A digital transmission system uses a $(7,4)$ systematic linear Hamming code for transmitting data over a noisy channel. If three of the message code-word pairs in this code $\left(\boldsymbol{m}_{\boldsymbol{i}} ; \boldsymbol{c}_{\boldsymbol{i}}\right)$, where, $\boldsymbol{c}_{\boldsymbol{i}}$ is the code-word corresponding to the $i^{\text {th }}$ message $\boldsymbol{m}_{\boldsymbol{i}}$, are known to be $(1100 ; 0101100)$, $(1110 ; 0011110)$, $(0110 ; 1000110)$, then which of the following is a valid code-word in this code?
(A) 1101001
(B) 1011010
(C) 0001011
(D) 0110100

Ans. C
Sol. Given message and corresponding code-words are,

Message					Code-word							
m_{i}	m_{1}	m_{2}	m_{3}	m_{4}	P_{1}	\boldsymbol{P}_{2}	\boldsymbol{P}_{3}	m_{1}	m_{2}	m_{3}	m_{4}	C_{i}
m_{12}	1	1	0	0	0	1	0	1	1	0	0	C_{12}
m_{14}	1	1	1	0	0	0	1	1	1	1	0	C_{14}
m_{6}	0	1	1	0	1	0	0	0	1	1	0	C_{6}

Here, m_{12} means, $m_{1} m_{2} m_{3} m_{4}=1100$ and its decimal equivalent is 12
Here, m_{14} means, $m_{1} m_{2} m_{3} m_{4}=1110$ and its decimal equivalent is 14
Here, m_{6} means, $m_{1} m_{2} m_{3} m_{4}=0110$ and its decimal equivalent is 6
From four parity generator we have to select any three equation,

$$
\begin{aligned}
& P_{A}=m_{1} \oplus m_{2} \oplus m_{3} \\
& P_{B}=m_{1} \oplus m_{2} \oplus m_{4} \\
& P_{C}=m_{2} \oplus m_{3} \oplus m_{4} \\
& P_{D}=m_{1} \oplus m_{3} \oplus m_{4}
\end{aligned}
$$

From comparing with all three given code-words i.e., C_{12}, C_{14} and C_{6}

$$
P_{1}=P_{B}, P_{2}=P_{C}, P_{3}=P_{A}
$$

So, for message $m_{9}=1001, C_{9}=0111001$
Option (A) is wrong.

$$
m_{10}=1010, C_{10}=1101010
$$

Option (B) is wrong.

$$
m_{11}=1011, C_{11}=0001011
$$

Option (C) is correct.

$$
m_{4}=0100, C_{4}=1110100
$$

Option (D) is wrong.

Hence, the correct option is (C).

Question 42

Communications System (1M)

A 4 kHz sinusoidal message signal having amplitude 4 V is fed to a delta modulator (DM) operating at a sampling rate of 32 kHz . The minimum step size required to avoid slope overload noise in the DM (rounded off to two decimal places) is \qquad V.

Ans. 3.14
Sol. Given : Message signal frequency, $f_{m}=4 \mathrm{kHz}$
Message signal amplitude, $A_{m}=4 \mathrm{~V}$
Sampling rate, $f_{s}=32 \mathrm{kHz}$
Assume message signal, $m(t)=A_{m} \cos 2 \pi f_{m} t$
Slope of $m(t)=\frac{d}{d t} m(t)=\left(2 \pi f_{m}\right) A_{m} \cos 2 \pi f_{m} t$
Maximum slope of $m(t)$ is,

$$
\begin{equation*}
\left.\frac{d}{d t} m(t)\right|_{\max }=2 \pi f_{m} A_{m} \quad\left[\because \text { Maximum value of }\left(\cos 2 \pi f_{m} t\right)=1\right] \tag{i}
\end{equation*}
$$

To avoid slope overload distortion,

$$
\begin{align*}
& s f_{s} \geq\left.\frac{d}{d t} m(t)\right|_{\max } \\
& s f_{s} \geq 2 \pi f_{m} A_{m} \\
& s \geq \frac{2 \pi f_{m} A_{m}}{f_{s}}
\end{align*}
$$

So, minimum value of step size s is,

$$
\begin{aligned}
& s_{\min }=\frac{2 \pi f_{m} A_{m}}{f_{s}} \\
& s_{\min }=\frac{2 \pi \times 4 \times 4}{32}=\pi=3.14 \mathrm{~V}
\end{aligned}
$$

Hence, the minimum step size required to avoid slope overload is 3.14 V .

Question 43

Communications System (1M)

A speech signal, band limited to 4 kHz , is sampled at 1.25 times the nyquist rate. The speech samples, assumed to be statistically independent and uniformly distributed in the range -5 V to +5 V , are subsequently quantized in an 8 -bit uniform quantizer and then transmitted over a voice-grade AWGN telephone channel. If the ratio of transmitted signal power to channel noise power is 26 dB , the minimum channel bandwidth required to ensure reliable transmission of the signal with arbitrarily small probability of transmission error (rounded off to two decimal places) is \qquad kHz.
Ans. 9.26

Sol. Given :

Speech signal/message signal frequency, $f_{m}=4 \mathrm{kHz}$
Sampling frequency, $f_{s}=1.25 f_{N R}$
Nyquist rate $f_{N R}=2 f_{m}=2 \times 4=8 \mathrm{kHz}$
Thus, sampling frequency, $f_{s}=1.25 f_{N R}=1.25 \times 8 \mathrm{kHz}=10 \mathrm{kHz}$
Speech samples are uniformly distributed in the range -5 V to 5 V and subsequently quantized in 8-bit uniform quantizer and transmitted over AWGN channel, so number of bits used by quantizer,
i.e., $n=8$

Bit rate is given as, $R_{b}=n f_{s}=8 \times 10=8 \mathrm{kbps}$
According to channel capacity theorem,

$$
\begin{align*}
& \left(R_{b}\right)_{\max } \leq C \\
& \left(R_{b}\right)_{\max }=C=B \log _{2}(1+S N R) \\
& 80 \times 10^{3}=B \log _{2}(1+S N R) \tag{i}
\end{align*}
$$

Here, $(S N R)_{d B}=26 \mathrm{~dB}$
$10 \log _{10}(S N R)=26$
$S N R=(10)^{2.6}=398.1$
From equation (i),

$$
80 \times 10^{3}=B \log _{2}(1+398.1)
$$

$\Rightarrow B=\frac{80 \times 10^{3}}{\log _{2}(399.1)}=9.259 \mathrm{kHz} \approx 9.26 \mathrm{kHz}$
Hence, minimum bandwidth required for reliable transmission is 9.259 kHz .

Question 44

Communications System (2M)
A sinusoidal message signal having root mean square value of 4 V and frequency of 1 kHz is fed to phase modulator with phase deviation constant $2 \mathrm{rad} / \mathrm{volt}$. If the carrier signal is $c(t)=2 \cos \left(2 \pi 10^{6} t\right)$, the maximum instantaneous frequency of the phase modulated signal (rounded off to one decimal place) is
\qquad Hz.
Ans. 1011313.71
Sol. Given :
Message signal frequency, $f_{m}=1 \mathrm{kHz}$
Carrier signal, $c(t)=2 \cos \left(2 \pi 10^{6} t\right)$
Phase sensitivity factor, $k_{P}=2 \mathrm{rad} / \mathrm{V}$
Assuming message signal, $m(t)=A_{m} \sin \left(2 \pi f_{m} t\right)$
RMS value of message signal $m(t)$ is,

$$
\begin{aligned}
& \left.m(t)\right|_{\mathrm{RMS}}=\frac{A_{m}}{\sqrt{2}}=4 \mathrm{~V} \\
& A_{m}=4 \sqrt{2} \text { Volt, }
\end{aligned}
$$

So message signal $m(t)$ is,

$$
m(t)=A_{m} \cos 2 \pi f_{m} t=4 \sqrt{2} \cos 2 \pi 10^{3} t \mathrm{~V}
$$

So, phase modulation equation is,

$$
s(t)_{P M}=A_{C} \cos [2 \pi f_{c} t+\underbrace{k_{p} m(t)}_{\theta_{i}(t)}]
$$

Instantaneous frequency is given as,

$$
\begin{aligned}
\left.f_{i}(t)\right|_{P M} & =f_{c}+\frac{1}{2 \pi} \frac{d}{d t} \theta_{i}(t) \\
\left.f_{i}(t)\right|_{P M} & =f_{c}+\frac{1}{2 \pi} \frac{d}{d t}\left[k_{p} m(t)\right] \\
\left.f_{i}(t)\right|_{P M} & =f_{c}+\frac{k_{p}}{2 \pi} \frac{d}{d t}\left(4 \sqrt{2} \sin 2 \pi \cdot 10^{3} t\right) \\
\left.f_{i}(t)\right|_{P M} & =f_{c}+\frac{2}{2 \pi} 4 \sqrt{2}\left(2 \pi \cdot 10^{3}\right)\left(\cos 2 \pi \cdot 10^{3} t\right) \\
\left.f_{i}(t)\right|_{P M} & =f_{c}+8 \sqrt{2} \times 10^{3} \cos 2 \pi \cdot 10^{3} t
\end{aligned}
$$

So, maximum value of instantaneous frequency is,

$$
\begin{aligned}
& \left.f_{i}(t)\right|_{\max }=[1000+8 \sqrt{2}] \times 10^{3} \\
& \left.f_{i}(t)\right|_{\max }=1011.3137 \times 10^{3} \\
& \left.f_{i}(t)\right|_{\max }=1011313.7 \mathrm{~Hz}
\end{aligned}
$$

Hence, the maximum instantaneous frequency of the phase modulated signal is $\mathbf{1 0 1 1 3 1 3 . 7} \mathbf{~ H z}$.

Question 45

Consider a carrier signal which is amplitude modulated by a single-tone sinusoidal message signal with a modulation index of 50%. If the carrier and one of the sidebands are suppressed in the modulated signal, the percentage of power saved (rounded off to one decimal place) is \qquad .
Ans. 94.44
Sol. Given signal is single tone sinusoidal message signal with modulation index, $\% m_{a}=50 \%$
$m_{a}=0.5$
According to question, carrier and one side band is suppressed, so saved power is, Power saved $=$ Carrier Power + One side band Power

$$
=P_{c}+P_{c} \frac{m_{a}^{2}}{4}=P_{c}\left[1+\frac{m_{a}^{2}}{4}\right]
$$

Total power of AM signal $=P_{c}\left[1+\frac{m_{a}^{2}}{2}\right]$
So, percentage saving in power is given as,
$\%$ Power saving $=\frac{\text { Power saved }}{\text { Total power }} \times 100 \%$
\% Power saving $=\frac{P_{c}\left[1+\frac{m_{a}^{2}}{4}\right]}{P_{c}\left[1+\frac{m_{a}^{2}}{2}\right]} \times 100 \%$
$\%$ Power saving $=\frac{1+\left(\frac{1}{2}\right)^{2} \frac{1}{4}}{1+\left(\frac{1}{2}\right)^{2} \frac{1}{2}} \times 100 \%$
$\%$ Power saving $=\frac{1+\frac{1}{16}}{1+\frac{1}{8}} \times 100 \%$
$\%$ Power saving $=94.44 \%$
Hence, the percentage of power saved is 94.44%.
Question 46
Consider a super heterodyne receiver tuned to 600 kHz . If the local oscillator feeds a 1000 kHz signal to the mixer, the image frequency (in integer) is \qquad kHz.
Ans. 1400

Sol. Given :

$f_{R F}=600 \mathrm{kHz}$
$f_{\text {LO }}=1000 \mathrm{kHz}$
For $f_{L O}>f_{R F}$, image frequency is given by,

$$
\begin{aligned}
& f_{\text {image }}=f_{R F}+2 f_{I F} \\
& f_{\text {image }}=2 f_{L O}-f_{R F}
\end{aligned} \quad\left(\because f_{I F}=f_{L O}-f_{R F}\right)
$$

GATE ACADEMY
steps to success...

$$
f_{\text {image }}=2 \times 1000-600=1400 \mathrm{kHz}
$$

Hence, the image frequency is 1400 kHz .

Question 47

Engineering Mathematics (2M)
In a high school having equal number of boy students and girl students. 75% of students study science and remaining 25% students study commerce. Commerce students are two times more likely to be a boy than are science students. The amount of information gained in knowing the a randomly selected girl student studies commerce (rounded off to 3 decimal places) is \qquad bits.
Ans. 3.322
Sol. Method 1 :

Given :

50% of the total students are boys so probability of boys $P(B)=\frac{1}{2}$
50% of the total students are girls so probability of girls $P(G)=\frac{1}{2}$
75% students studies science, so probability of student studies science, $P(S)=\frac{3}{4}$
25% students studies commerce, so probability of student studies commerce, $P(C)=\frac{1}{4}$
Given commerce students are two times more likely to be a boy than are science students.
Let the probability that a science student is boy i.e., $P\left(\frac{B}{S}\right)=p$.
Then as given, the probability that a commerce student is boy i.e., $P\left(\frac{B}{C}\right)=2 p$.
From total probability theorem, the probability of a selected student to be a boy is

$$
\begin{aligned}
& P(B)=P(C) P\left(\frac{B}{C}\right)+P(S) P\left(\frac{B}{S}\right) \\
& \frac{1}{2}=\left(\frac{1}{4} \times 2 p\right)+\left(\frac{3}{4} \times p\right) \\
& \frac{1}{2}=\frac{5 p}{4} \\
& p=\frac{2}{5}
\end{aligned}
$$

So, $P\left(\frac{B}{S}\right)=p=\frac{2}{5}$ and $P\left(\frac{B}{C}\right)=2 p=\frac{4}{5}$
Hence probability of a selected commerce student is a girl,

$$
P\left(\frac{G}{C}\right)=1-P\left(\frac{B}{C}\right)=1-\frac{4}{5}=\frac{1}{5}
$$

Probability of randomly selected girl studies commerce is given as

$$
\begin{aligned}
& P\left(\frac{C}{G}\right)=\frac{P(G \cap C)}{P(G)}=\frac{P(C) P\left(\frac{G}{C}\right)}{P(G)} \\
\Rightarrow & P\left(\frac{C}{G}\right)=\frac{\frac{1}{4} \times \frac{1}{5}}{\frac{1}{2}}=\frac{2}{20}=\frac{1}{10}
\end{aligned}
$$

Hence, information in knowing that a randomly selected girl studies commerce is given as

$$
I=\log _{2}\left[\frac{1}{P\left(\frac{C}{G}\right)}\right] \text { bits }=\log _{2} 10=3.32 \text { bits }
$$

Hence, the amount of information gained in knowing the a randomly selected girl student studies commerce is 3.32 bits.

Method 2 :

Let total number of students is 100 .
Given, there are equal number of boys and girl students.
$\therefore \quad$ Total number of boys $=50$
Total number of girls $=50$
Given commerce students are two times more likely to be a boy than are science students.
Let Probability of science student to be boy $=p$.
$\therefore \quad$ Probability of science students to be girl $=1-p$
p is defined as,

$$
p=\frac{\text { Number of boys in science }}{\text { Total students in science }}=\frac{B_{s}}{75}
$$

$\therefore \quad$ Number of boys in science $=B_{s}=75 p$
$\therefore \quad$ Number of girls in science $=75-75 p$
Number of boys in commerce $=50-75 p$
Number of girls in commerce $=25-(50-75 p)=75 p-25$
Given, $\frac{50-75 p}{25}=2 p$
$50-75 p=50 p$
$125 p=50$
$p=\frac{50}{125}=\frac{2}{5}$
$\therefore \quad$ Number of girls in commerce $=75 p-25=75 \times \frac{2}{5}-25=30-25=5$
$\therefore \quad$ Probability that if a randomly selected student out of 100 students is a girl then she studies commerce is,

$$
\begin{aligned}
& P\left(\frac{C}{G}\right)=\frac{\text { Number of girls in commerce }}{\text { Total girl students }} \\
& =\frac{5}{50}=\frac{1}{10}
\end{aligned}
$$

Hence, Information in knowing that a randomly selected student is girl and studies commerce is

$$
\begin{aligned}
& I=\log _{2} \frac{1}{P\left(\frac{G}{C}\right)} \text { bits } \\
& I=\log _{2} 10=3.32 \mathrm{bits}
\end{aligned}
$$

Hence, the amount of information gained in knowing the a randomly selected girl student studies commerce is 3.32 bits.

Question 48

Analog Electronics (2M)

An asymmetrical periodic pulse train $V_{i n}$ of 10 V amplitude with on-time $T_{O N}=1 \mathrm{~ms}$ and off-time $T_{O F F}=1 \mu \mathrm{~s}$ is applied to the circuit shown in figure. The diode D_{1} is ideal.

The difference between the maximum voltage and minimum voltage of the output wave form V_{0} (in integer) is \qquad V.

Ans. 10
Sol. Given circuit and asymmetrical periodic input $V_{\text {in }}$ is shown below,

Here, $T_{O N}=1 \mathrm{msec}, T_{O F F}=1 \mu \mathrm{sec}$ and initially capacitor C is uncharged and diode D is ideal diode.
(i) For $0<t<T_{O N}$:

Maximum value of $V_{i n}$ is 10 V and diode D is ON and will be short circuit, so capacitor will get charged instantly to 10 V as shown below,

Thus, capacitor voltage $V_{C}=10 \mathrm{~V}$ and voltage $V_{0}=0$ volt.
(ii) For $T_{\text {ON }}<t<T_{\text {OFF }}$:

Given input voltage $V_{\text {in }}=0$ it means short circuit and diode is OFF and will be open circuit, so circuit becomes as,

Current, $I=\frac{-10}{500}=-20 \mathrm{~mA}$
Voltage, $V_{0}=I \times 500=(-20) \times 500=-10 \mathrm{~V}$
Thus output waveform under steady state is,

Here, $V_{0}($ maximum $)=0 \mathrm{~V}, V_{0}($ minimum $)=-10 \mathrm{~V}$
Thus, difference between maximum and minimum output voltages,
$V_{0}($ maximum $)-V_{0}($ minimum $)=0-(-10)=+10 \mathrm{~V}$

Hence, the difference between the maximum voltage and minimum voltage of the output wave form V_{0} is +10 V .

Question 49

If the vectors $(1.0,-1.0,2.0)(7.0,3.0, x)(2.0,3.0,1.0)$ in \mathbb{R}^{3} are linearly dependent, the value of x is
\qquad .

Ans. 8
Sol. Given :
According to Question given vectors are (1.0, -1.0, 2.0), (7.0, 3.0, x) and (2.0, 3.0, 1.0) are linearly dependent.
We know that the determinant of linearly dependent vectors are zero.

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & -1 & 2 \\
7 & 3 & x \\
2 & 3 & 1
\end{array}\right|=0 \\
& 1(3-3 x)+1(7-2 x)+2(21-6)=0 \\
& 3-3 x+7-2 x+30=0 \\
& 5 x=40 \\
& x=8
\end{aligned}
$$

Hence, the correct answer is 8 .

Question 50

Electronic Devices (2M)

For an n channel silicon MOSFET with 10 nm gate oxide thickness, the substrate sensitivity $\left(\partial \mathrm{V}_{\mathrm{T}} / \partial\left|\mathrm{V}_{\mathrm{BS}}\right|\right)$ is found to be $50 \mathrm{mV} / \mathrm{V}$ at a substrate voltage $\left|\mathrm{V}_{\mathrm{BS}}\right|=2 \mathrm{~V}$, where V_{T} is the threshold voltage of the MOSFET. Assume that $\left|\mathrm{V}_{\mathrm{BS}}\right| \gg 2 \phi_{\mathrm{B}}$, where $\mathrm{q} \phi_{\mathrm{B}}$ is the separation between the fermi energy level E_{F} and the intrinsic level E_{i} in the bulk. Parameters given are :

Electron charge $(q)=1.6 \times 10^{-19} \mathrm{C}$
Vacuum permittivity $\left(\varepsilon_{0}\right)=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
Relative permittivity of silicon $\left(\varepsilon_{s i}\right)=12$
Relative permittivity of oxide $\left(\varepsilon_{\mathrm{ox}}\right)=4$
The doping concentration of the substrate is
(A) $7.37 \times 10^{15} \mathrm{~cm}^{-3}$
(B) $4.37 \times 10^{15} \mathrm{~cm}^{-3}$
(C) $2.37 \times 10^{15} \mathrm{~cm}^{-3}$
(D) $9.37 \times 10^{15} \mathrm{~cm}^{-3}$

Ans. A
Sol. Given :
Gate-oxide thickness, $t_{o x}=10 \mathrm{~nm}$

Substrate sensitivity, $\frac{\partial V_{T}}{\partial\left|V_{B S}\right|}=50 \mathrm{mV} / \mathrm{V}$
Substrate voltage, $\left|V_{B S}\right|=2 \mathrm{~V}$
Electron charge $(q)=1.6 \times 10^{-19} \mathrm{C}$
Vacuum permittivity $\left(\varepsilon_{0}\right)=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
Relative permittivity of silicon $\left(\varepsilon_{s i}\right)=12$
Relative permittivity of oxide $\left(\varepsilon_{\mathrm{ox}}\right)=4$
Threshold voltage when body effect is consider,

$$
\begin{equation*}
V_{T}=V_{T o}+\gamma\left[\sqrt{\left|2 \phi_{F}\right|+\left|V_{S B}\right|}-\sqrt{\left|2 \phi_{F}\right|}\right] \tag{i}
\end{equation*}
$$

Where, $\gamma=\frac{\sqrt{2 q N_{A} \varepsilon_{s i}}}{C_{o x}}=\frac{\sqrt{2 q N_{A} \varepsilon_{s i}}}{\varepsilon_{o x}} t_{o x}$
As per the question, $\phi_{F}=\phi_{B} \rightarrow$ Both are same
Differentiate equation (i), with respect to $V_{B S}$,

$$
\begin{equation*}
\frac{\partial V_{T}}{\partial V_{B S}}=0+\gamma \frac{1}{2}\left(\left|2 \phi_{F}\right|+\left|V_{S B}\right|\right)^{-\frac{1}{2}} \tag{ii}
\end{equation*}
$$

$\left[\because C_{o x}=\frac{\varepsilon_{o x}}{t_{o x}}\right]$

Since $\quad\left|V_{S B}\right| \gg\left|2 \phi_{F}\right|$, so equation (ii) becomes as,

$$
\begin{aligned}
& \frac{\partial \mathrm{V}_{\mathrm{T}}}{\partial \mathrm{~V}_{\mathrm{BS}}}=\gamma\left(\frac{1}{2}\right)\left(\left|\mathrm{V}_{\mathrm{SB}}\right|\right)^{-\frac{1}{2}} \\
& 50 \times 10^{-3}=\gamma\left(\frac{1}{2}\right)(2)^{-\frac{1}{2}} \\
& 50 \times 10^{-3}=\gamma \frac{1}{2 \sqrt{2}}
\end{aligned}
$$

$$
\gamma=2 \sqrt{2} \times 50 \times 10^{-3}=0.14142
$$

As

$$
\gamma=\sqrt{2 q N_{A} \varepsilon_{s i}}\left[\frac{t_{o x}}{\varepsilon_{o x}}\right]
$$

$$
\sqrt{2 q N_{A} \varepsilon_{s i}} \times \frac{t_{o x}}{\varepsilon_{o x}}=0.14142
$$

$$
2 q N_{A} \varepsilon_{s i}=\left[0.14142 \times\left(\frac{\varepsilon_{o x}}{t_{o x}}\right)\right]^{2}
$$

$$
N_{A}=\frac{1}{2 q \varepsilon_{s i}}\left[0.14142 \times\left(\frac{\varepsilon_{o x}}{t_{o x}}\right)\right]^{2}
$$

$$
\begin{aligned}
& N_{A}=\frac{1}{2 q\left(12 \varepsilon_{0}\right)} \times\left[0.14142 \times\left(\frac{4 \varepsilon_{0}}{t_{o x}}\right)\right]^{2} \quad\left(\because \varepsilon_{s i}=12 \varepsilon_{0}, \varepsilon_{o x}=4 \varepsilon_{0}\right) \\
& N_{A}=\frac{(0.14142)^{2} \times\left(4 \times 8.85 \times 10^{-14}\right)^{2}}{2 \times 1.6 \times 10^{-19} \times 12 \times 8.55 \times 10^{-14} \times\left(10 \times 10^{-9} \times 100\right)^{2}} \\
& N_{A}=7.37 \times 10^{15} \mathrm{~cm}^{-3}
\end{aligned}
$$

Hence, the correct option is (A).

Question 51

In the circuit shown in the figure, the transistors M_{1} and M_{2} are operating in saturation. The channel length modulation coefficients of both the transistors are non-zero. The transconductance of the MOSFETs M_{1} and M_{2} are $g_{m 1}$ and $g_{m 2}$, respectively, and the internal resistance of the MOSFETs M_{1} and M_{2} are r_{01} and r_{02}, respectively.

Ignoring the body effect, the ac small signal voltage gain $\left(\partial V_{\text {out }} / \partial V_{\text {in }}\right)$ of the circuit is
(A) $-\mathrm{g}_{\mathrm{m} 2}\left(\mathrm{r}_{01} \| \mathrm{r}_{02}\right)$
(B) $-\mathrm{g}_{\mathrm{m} 2}\left(\frac{1}{\mathrm{~g}_{\mathrm{m} 1}} \| \mathrm{r}_{02}\right)$
(C) $-\mathrm{g}_{\mathrm{m} 1}\left(\frac{1}{\mathrm{~g}_{\mathrm{m} 2}}\left\|\mathrm{r}_{01}\right\| \mathrm{r}_{02}\right)$
(D) $-\mathrm{g}_{\mathrm{m} 2}\left(\frac{1}{\mathrm{~g}_{\mathrm{m} 1}}\left\|\mathrm{r}_{01}\right\| \mathrm{r}_{02}\right)$

Ans. D
Sol. Given circuit is shown below,

Method 1 :

Channel length modulation coefficient $\lambda \neq 0$, it means internal resistance of MOSFET M_{1} and M_{2} are not zero.
i.e. $r_{01} \neq 0, r_{02} \neq 0$

From figure $V_{g_{1}}=0 \mathrm{~V}, V_{s_{2}}=0 \mathrm{~V}$ and $V_{d_{1}}=0 \mathrm{~V}$,
$V_{s_{1}}=V_{d_{2}}=V_{\text {out }}, V_{g_{2}}=V_{\text {in }}$.
So, $V_{g_{1}}=V_{g_{1}}-V_{s_{1}}=0-V_{\text {out }}=-V_{\text {out }}$
$V_{g s_{2}}=V_{g_{2}}-V_{s_{2}}=V_{i}-0=V_{i}$
The AC equivalent model of given circuit is shown below,

Applying KCL at node N,

Here,

$$
\begin{align*}
& \frac{V_{\text {out }}}{r_{01}}-g_{m_{1}} V_{g s_{1}}+g_{m_{2}} V_{g s_{2}}+\frac{V_{\text {out }}}{r_{02}}=0 \tag{i}\\
& V_{g s_{1}}=-V_{\text {out }} \tag{ii}\\
& V_{g s_{2}}=V_{\text {in }} \tag{iii}
\end{align*}
$$

So, put equation (ii) and (iii) into equation (i),

$$
V_{\text {out }}\left[\frac{1}{r_{01}}+\frac{1}{r_{02}}+g_{m_{1}}\right]=-g_{m_{2}} V_{i}
$$

So, $\quad \frac{V_{\text {out }}}{V_{i}}=-g_{m_{2}}\left[\frac{1}{g_{m_{1}}}\left\|r_{01}\right\| r_{02}\right]$
Hence, $\quad \frac{\partial V_{\text {out }}}{\partial V_{i}}=-g_{m_{2}}\left[\frac{1}{g_{m_{1}}}\left\|r_{01}\right\| r_{02}\right]$
Hence, the correct option is (D).

Method 2:

Given MOSFET arrangement is shown below,

Channel length modulation coefficient $\lambda \neq 0$, it means internal resistance of MOSFET M_{1} and M_{2} are not zero i.e., $r_{01} \neq 0, r_{02} \neq 0$.

AC equivalent circuit :

(i) All capacitors are short circuited.
(ii) All DC voltage sources replaced by ground.

Here, drain $\left(D_{1}\right)$ and gate $\left(G_{1}\right)$ of $\operatorname{MOSFET}\left(M_{1}\right)$ are grounded, so it can be drawn as,

When drain and gate of MOSFET M_{1} are shorted to each other then it can be replaced by resistance of value $\left(\frac{1}{g m_{1}} \| r_{01}\right)$ as shown below,

So, given circuit becomes as,

Above MOS circuit can redraw as,

Here, $\frac{1}{g_{m_{1}}} \| r_{01}=R_{L}$ work as load for MOSFET $\left(M_{2}\right)$, so small signal voltage gain of $\operatorname{MOSFET}\left(M_{2}\right)$ is
$\left(A_{V}\right)_{M_{2}}=-g_{m_{2}}\left(R_{L} \| r_{0_{2}}\right)$
$\left(A_{V}\right)_{M_{2}}=-g_{m_{2}}\left[\left(\frac{1}{g_{m_{1}}} \| r_{0_{1}}\right) \| r_{o_{2}}\right]$
Hence, the correct option is (D).

Question 52

Network Theory (2M)
The circuit in the figure contains a current source driving a load having an inductor and a resistor in series, with a shunt capacitor across the load. The ammeter is assumed to have zero resistance. The switch is closed at time $t=0$.

Initially when the switch is open, the capacitor is discharged and ammeter reads zero ampere. After the switch is closed, the ammeter reading keeps fluctuating for some time till it settles to a final steady value. The maximum ammeter reading that one will observe after the switch is closed (rounded off to two decimal places) is \qquad A.

Ans. 1.44
Sol. The given circuit is shown below,

When switch is closed and taking Laplace transform of above circuit,

Given : $L=10 \mathrm{mH}, C=100 \mathrm{pF}, R=5 \mathrm{k} \Omega$.
Applying current divider rule in the above circuit,

$$
\begin{aligned}
& \frac{I_{i}(s) \times\left(\frac{1}{s C}\right)}{\frac{1}{s C}+R+s L} \\
& I_{0}(s)= \\
& I_{0}(s)=\frac{I_{i}(s)}{L C s^{2}+R C s+1}
\end{aligned}
$$

$$
\begin{align*}
& I_{0}(s)=\frac{I_{i}(s) \times \frac{1}{L C}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}} \\
& \frac{I_{0}(s)}{I_{i}(s)}=\frac{\frac{1}{L C}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}} \tag{i}
\end{align*}
$$

Equation (i) shows current transfer function, so we can compare denominator of equation (i) with characteristic equation of second order system $s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}=0$, then we get
(i) $\omega_{n}^{2}=\frac{1}{L C}$

$$
\begin{aligned}
& \omega_{n}^{2}=\frac{1}{10 \times 10^{-3} \times 100 \times 10^{-12}} \\
& \omega_{n}=\sqrt{10^{12}}=10^{6} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

(ii) $2 \xi \omega_{n}=\frac{R}{L}$

$$
\begin{aligned}
& 2 \xi \times 10^{6}=\frac{5000}{10 \times 10^{-3}} \\
& \xi=\frac{1}{4}=0.25
\end{aligned}
$$

Here $\xi<1$ so system is underdamped system.
(iii)Steady state value of $i_{0}(t)$ is,

Input $I_{i}(s)=\frac{1}{s}$ is the step function and $\xi<1$, so response $i_{0}(t)$ will be an underdamped response for unit step signal as shown below,

So, peak value of $i_{0}(t)$ is,

$$
\begin{equation*}
i_{0}\left(t_{p}\right)=A K\left[1+e^{-\pi \cot \theta}\right] \tag{ii}
\end{equation*}
$$

Where, $A K=$ Steady state value of $i_{0}(t)$

$$
A K=i_{0}(\infty)=1
$$

Thus,

$$
\begin{align*}
& i_{0}\left(t_{p}\right)=1+e^{-\pi \cot \theta} \tag{iii}\\
& \cos \theta=\xi=0.25 \\
& \theta=\cos ^{-1}(0.25)=75.52^{0} \\
& \cot \left(75.52^{0}\right)=0.258
\end{align*}
$$

So, equation (iii) becomes

$$
i_{0}\left(t_{p}\right)=1+e^{-\pi \times 0.258}=1.44
$$

Hence, the maximum ammeter reading that one will observe after the switch is closed is 1.44 .
Question 53
Network Theory (1M)
Consider the circuit shown in the figure.

The value of V_{0} (rounded off to 1 decimal place) is \qquad V.

Ans. 1
Sol. Given circuit is shown below,

Nodal analysis at node V_{0}

$$
\begin{aligned}
& -6+\frac{V_{0}-4}{1}+\frac{V_{0}}{1}+8=0 \\
& 2 V_{0}-10+8=0 \\
& 2 V_{0}=2 \\
& V_{0}=1 \mathrm{~V}
\end{aligned}
$$

Hence, the value of V_{0} is 1 V .

Question 54

Electromagnetic Theory (2M)

A standard air filled rectangular waveguide with dimensions $a=8 \mathrm{~cm}, b=4 \mathrm{~cm}$ operates at 3.4 GHz . For the dominant mode of wave propagation, the phase velocity of the signal is v_{p}. The value (rounded off to two decimal places) of v_{p} / c, where c denotes the velocity of light is \qquad .
Ans. 1.198
Sol. Given : $a=8 \mathrm{~cm}, b=4 \mathrm{~cm}$,
For a standard rectangular waveguide $a>b$
So, cut-off frequency for dominant mode $\left(T E_{10}\right)$ is

$$
\begin{aligned}
& f_{C}=\frac{c}{2 a} \\
& f_{C}=\frac{3 \times 10^{8}}{2 \times 8 \times 10^{-2}}=\frac{30 \times 10^{7}}{16 \times 10^{-2}}=1.875 \times 10^{9} \mathrm{~Hz} \\
& f_{C}=1.875 \mathrm{GHz}
\end{aligned}
$$

Given operating frequency is, $f=3.4 \mathrm{GHz}$
So, phase velocity in rectangular waveguide,

$$
\begin{aligned}
& v_{p}=\frac{c}{\sqrt{1-\left(\frac{f_{C}}{f}\right)^{2}}} \\
& \frac{v_{p}}{c}=\frac{1}{\sqrt{1-\left(\frac{1.875}{3.4}\right)^{2}}}=1.198
\end{aligned}
$$

Hence, the value of v_{p} / c is 1.198 .

Question 55

Network Theory (2M)
Consider the two port network shown in the figure.

The admittance parameters, in Siemens, are
(A) $Y_{11}=2, Y_{12}=-4, Y_{21}=-4, Y_{22}=2$
(B) $Y_{11}=1, Y_{12}=-2, Y_{21}=-1, Y_{22}=3$
(C) $Y_{11}=2, Y_{12}=-4, Y_{21}=-1, Y_{22}=2$
(D) $Y_{11}=2, Y_{12}=-4, Y_{21}=-4, Y_{22}=3$

Ans. C
Sol. Given circuit is shown below

Nodal analysis at node V_{1}

$$
\begin{aligned}
& -I_{1}+\frac{V_{1}}{1}-3 V_{2}+\frac{V_{1}-V_{2}}{1}=0 \\
& I_{1}=V_{1}-3 V_{2}+V_{1}-V_{2} \\
& I_{1}=2 V_{1}-4 V_{2}
\end{aligned}
$$

Compare I_{1} with $1^{\text {st }}$ equation of Y-parameter is,

$$
I_{1}=Y_{11} V_{1}+Y_{12} V_{2}
$$

Thus, $\boldsymbol{Y}_{11}=2 \boldsymbol{J}, \boldsymbol{Y}_{12}=-\mathbf{4} \boldsymbol{J}$
Nodal analysis at node V_{2}

$$
\begin{aligned}
& -I_{2}+\frac{V_{2}}{1}+\frac{V_{2}-V_{1}}{1}=0 \\
& I_{2}=2 V_{2}-V_{1} \\
& I_{2}=-V_{1}+2 V_{2}
\end{aligned}
$$

Compare I_{2} with $2^{\text {nd }}$ equation of Y -parameter is,

$$
I_{2}=Y_{21} V_{1}+Y_{22} V_{2}
$$

Thus, $Y_{21}=-1 \mho, Y_{22}=2 \mho$

Thus admittance parameter of given network is,

$$
[Y]=\left[\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right]
$$

Hence, the correct option is (C).

General Aptitude

Question 56

General Aptitude (1M)
p and q are positive integers and $\frac{p}{q}+\frac{q}{p}=3$, then, $\frac{p^{2}}{q^{2}}+\frac{q^{2}}{p^{2}}=$
(A) 3
(B) 7
(C) 9
(D) 11

Ans. B
Sol. Given : $\frac{p}{q}+\frac{q}{p}=3$
Squaring on both sides, we get

$$
\begin{aligned}
& \frac{p^{2}}{q^{2}}+\frac{q^{2}}{p^{2}}+2 \frac{p}{q} \frac{q}{p}=9 \\
& \frac{p^{2}}{q^{2}}+\frac{q^{2}}{p^{2}}+2=9 \\
& \frac{p^{2}}{q^{2}}+\frac{q^{2}}{p^{2}}=9-2=7
\end{aligned}
$$

Hence, the correct option is (B).
Question 57
General Aptitude (1M)
The current population of a city is $11,02,500$. If it has been increasing at the rate of 5% per annum, what was its population 2 years ago?
(A) $9,92,500$
(B) $9,95,006$
(C) $10,00,000$
(D) $12,51,506$

Ans. C
Sol. Given :
Current population of city $=1102500$
Rate of increment of population $=5 \%$ per year
Method 1 :
Let the population of the city 2 years ago be x. As the population has been increasing at the rate of 5% per annum, so after 2 years x becomes as,

$$
\begin{aligned}
& (x \times 105 \%) \times 105 \%=1102500 \\
& x \times \frac{105}{100} \times \frac{105}{100}=1102500 \\
& x=\frac{1102500 \times 100 \times 100}{105 \times 105}
\end{aligned}
$$

$$
x=10,00,000
$$

Hence, the correct option is (C).
Method 2 :
Suppose 2 years ago population of city was " 100 "
\therefore

$110.25 \longrightarrow \underset{\text { (Original population) }}{1102500}$
$\therefore \quad 1=\frac{1102500}{110.25}=10000$
Hence, 2 years ago population was

$$
100 \times 10000=1000000
$$

Hence, the correct option is (C).

Question 58

Corners are cut from an equilateral triangle to produce a regular convex hexagon as shown in the figure above.
The ratio of the area of the regular convex hexagon to the area of original equilateral triangle is
(A) $2: 3$
(B) $3: 4$
(C) $4: 5$
(D) $5: 6$

Ans. A
Sol. Given : Equilateral triangle

\because Sides of Hexagon formed by an equilateral triangle to the same equilateral triangle $=1: 3$
$\therefore \quad$ The ratio of the area of the regular convex Hexagon $(P Q R S T U)$ to the area of original equilateral triangle is
$\Rightarrow \quad \frac{3 \sqrt{3}}{2}(1)^{2}: \frac{\sqrt{3}}{4}(3)^{2}$
$\Rightarrow \quad \frac{3 \sqrt{3}}{2}: \frac{9 \sqrt{3}}{4}$
$\Rightarrow \quad 2: 3$
Hence, the correct option is (A).

Question 59

Consider a square sheet of side 1 unit. In the first step, it is cut along the main diagonal to get two triangles. In the next step, one of the cut triangles is revolved about its short edge to from solid cone. The volume of a resulting cone, in a cube units is \qquad .
(A) $\frac{\pi}{3}$
(B) $\frac{2 \pi}{3}$
(C) $\frac{3 \pi}{2}$
(D) 3π

Ans. A
Sol. Given : Square sheet of side 1 unit.

It is cut along the main diagonal to get two triangles

One of the cut triangle is revolved about its short edge to form solid cone

$\because \quad$ The volume of cone $=\frac{1}{3} \pi R^{2} M$
\therefore The volume of a resulting cone $=\frac{1}{3} \pi(1)^{2}(1)=\frac{\pi}{3}$
Hence, the correct option is (A).

Question 60

\qquad is to \qquad .
Nostalgia is to anticipation as
Which one of the following options maintains a similar logical relation in the above sentence?
(A) Present, Past
(B) Future, Past
(C) Past, Future
(D) Future, Present

General Aptitude (1M)

Ans. (C)
$\begin{array}{ll}\text { Ans. (C) } \\ \text { Sol. Nostalgia : Recollection of a period in the past. } \\ & \text { Anticipation : Expectation or prediction to future. }\end{array}$
(C)
Nostalgia : Recollection of a period in the past.
Anticipation : Expectation or prediction to future.

Hence, the correct option is (C).
Question 61

Gen

The number of minutes spent by two Students, X and Y, exercising every day in a given week are shown in the bar chart above.
The number of days in a given week in which one of the students spent a minimum of 10% more than the other student, on a given day, is
(A) 4
(B) 5
(C) 6
(D) 7

Ans. C

Sol. According to the given data in question we can formed the table as shown below,

Days	\boldsymbol{Y}	\boldsymbol{X}	\%more than the other students
Sunday	65	55	$\frac{65-55}{55} \times 100 \%=18.18 \%$
Saturday	50	60	$\frac{60-50}{50} \times 100 \%=20 \%$
Friday	35	20	$\frac{35-20}{20} \times 100 \%=75 \%$
Thursday	55	60	$\frac{60-55}{55} \times 100 \%=9.09 \%$
Wednesday	50	60	$\frac{60-50}{50} \times 100 \%=20 \%$
Tuesday	65	55	$\frac{65-55}{55} \times 100 \%=18.18 \%$
Monday	70	45	$\frac{70-45}{45} \times 100 \%=55.55 \%$

Except Thursday, there are total 6 days in which one of the students spent a minimum of 10% more than the other student.
Hence, the correct option is (C).
Question 62
General Aptitude (1M)

The least number of squares that must be added so that the line P - Q become the line of symmetry is \qquad .
(A) 4
(B) 3
(C) 6
(D) 7

Ans. C
Sol. We have to add six square blocks to make line PQ as a line of symmetry as shown below,

Hence, the correct option is (C).

Question 63

General Aptitude (2M)
Computers are ubiquitous. They are used to improve efficiency in almost all fields from agriculture to space exploration. Artificial intelligence (AI) is currently a hot topic. AI enables computer to learn, given enough training data. For humans, sitting in front of a computer for long hours can lead health issues.
Which of the following can be deduced from the above passage?
(i) Nowadays computers are present in almost all places.

GATE RCADEMY
(ii) Computers cannot be used for solving problems in engineering.
(iii) For humans, there are positive and negative effects of using computers.
(iv) Artificial intelligence can be done without data.
(A) (ii) and (iii)
(B) (ii) and (iv)
(C) (i), (ii) and (iv)
(D) (i) and (iii)

Ans. D

Question 64

General Aptitude (2M)
Given below are two statements and two conclusions.

Statement :

Statement 1: All purple are green.
Statement 2 : All Black are green.

Conclusion :

Conclusion I: Some black are purple
Conclusion II : No black is purple
Based on the above statements and conclusions, which one of the following options is logically CORRECT?
(A) Only conclusion I is correct.
(B) Only conclusion II is correct.
(C) Either conclusion I or II is correct
(D) Both conclusion I \& II are correct

Ans. C
Sol. According to the statement and conclusion given in the question we can formed Venn diagram as shown below,

1. can't say (wrong)
2. can't say (wrong)

Both the conclusion are wrong by can't say condition and variable of the conclusion are same. Also one conclusion is positive and another is negative. Hence they full fill the condition of "either or" case.
Hence, the correct option is (C).

Question 65

General Aptitude (1M)
Consider the following sentences :
(i) I woke up from sleep.
(ii) I woked up from sleep.
(iii) I was woken up from sleep.
(iv) I was wokened up from sleep.

Which of the above sentences are grammatically CORRECT?
(A) (i) and (ii)
(B) (i) and (iii)
(C) (ii) and (iii)
(D) (i) and (iv)

Ans. B

© Copyright	Head Office : A/114-115, Smriti Nagar, Bhilai (C.G.), Contact : 9713113156, 9589894176	www.gateacademy.co.in
	Branch Office : Raipur $⿴$: 79743-90037, Bhopal $⿴$: 89591-87052	www. facebook.com/gateacademy

