

variable x, y, z and w as shown in below, S_0 and S_1 denote the least significant bit (LSB) and most significant bit (MSB) of the selector lines of multiplexer respectively. I_0 , I_1 , I_2 , I_3 are input lines of the multiplexer.

GATE 2021 [Forenoon Session] Instrumentation Engineering

$$\sin\phi = \sqrt{1 - 0.835^2} = 0.55$$

Thus reactive power Q,

$$Q = V_{rms} I_{rms} \sin \phi$$
$$Q = 230 \times 0.3125 \times 0.55 = 39.53 \text{ VAR}$$

Question 6

Digital Electronics (MCQ)

[2 Marks]

stebs to succe

GATE AC

Given below is the diagram of a synchronous sequential circuit with one J-K flip-flop and one T flip-flop with their outputs denoted as A and B respectively, with $J_A = (\overline{A} + \overline{B})$, $K_A = (A + B)$ and $T_B = A$,

Starting from the initial state (AB = 00), the sequence of states (AB) visited by the circuit is

(A) $00 \rightarrow 10 \rightarrow 11 \rightarrow 01 \rightarrow 00.....$ (B) $00 \rightarrow 01 \rightarrow 10 \rightarrow 11 \rightarrow 00.....$ (C) $00 \rightarrow 10 \rightarrow 01 \rightarrow 11 \rightarrow 00.....$ (D) $00 \rightarrow 01 \rightarrow 11 \rightarrow 00.....$

Ans. (

Sol. Given circuit is synchronous sequential circuit. Thus next state equation of FF A,

$$Q_{A+1} = J_A Q_A + K_A Q_A$$
$$Q_{A+1} = (\overline{Q}_A + \overline{Q}_B) \overline{Q}_A + (\overline{Q}_A + Q_B) Q_A$$
$$Q_{A+1} = \overline{Q}_A + \overline{Q}_A \overline{Q}_B + \overline{Q}_A \overline{Q}_B Q_A$$

 $Q_{A+1} = \overline{Q}_A$

Next state equation of FF B,

-

$$Q_{B+1} = T_B \oplus Q_B$$

 $Q_{B+1} = Q_A \oplus Q_B$ State transition table, **CE 2004**

	Preser	nt state	Ne	ext State
Clock	$Q_{\scriptscriptstyle A}$	$Q_{\scriptscriptstyle B}$	$Q_{A+1} = \overline{Q}_A$	$Q_{B+1} = Q_A \oplus Q_B$
1	0	0	1	0
2	0	1	1	1
3	1	0	0	1
4	1	1	0	0

State sequence is as follows,

~	_			
(C)	Со	bv	rig	ht

www.gateacademy.co.in

GATE 2021 [Forenoon Session] Instrumentation Engineering

00, 10, 01, 11, 00

Hence, the correct answer is (C).

Question 7

Analog Electronics (NAT)

All the transistors used in the circuit are matched and have a current gain β of 20. Neglecting the Early effect, the current I_{04} in milliampere is _____. [2 Marks]

Branch Office : Raipur 🔇 : 79743-90037, Bhopal 🔇 : 89591-87052

www. 🖬 acebook.com/gateacademy

GATE 2021 [Forenoon Session] PAGE **Instrumentation Engineering**

GATE ACA

For a 4-bit flash type Analog to Digital Convertor (ADC) with full scale input voltage range "V", which of the following statement(s) is/are true? [1 Mark]

- (A) A change in input voltage by $\frac{V}{16}$ will always flip MSB of the output.
- (B) A change in input-voltage by $\frac{V}{16}$ will always flip LSB of the output.
- (C) The ADC requires one 4 to 2 priority encoder and 4 comparators.
- (D) The ADC requires 15 comparators.

B. D Ans.

9

- *n*-bit flash type ADC requires $2^n 1$ comparators. Sol.
 - So, 4-bit flash type ADC requires
 - $2^4 1 = 15$ comparators
 - So, option (D) is correct.

Also, a change in input voltage by $\frac{V}{2^n}$ will always flip LSB of the output of *n*-bit flash ADC.

So, a change in input voltage by $\frac{V}{16}$ will always flip LSB of the output of 4-bit flash ADC.

	10					
	Input of ADC	Output of ADC				
	input of ADC	MSB	47		LSB	
	$0 < V_{in} < \frac{V}{16}$	0	0	0	0	
	$\frac{V}{16} < V_{in} < \frac{2V}{16}$	0	0	0	1	
	$\frac{2V}{\sqrt{2V}} = \frac{3V}{\sqrt{2V}}$	Ο	0		0	
	16 ¹ , 16	0	U	1	U	1.10
	$\frac{3V}{16} < V_{in} < \frac{4V}{16}$	0	0	1	1	
S	$\frac{4V}{16} < V_{in} < \frac{5V}{16}$	0		0	0	4
	$-\frac{5V}{16} < V_{in} < \frac{6V}{16}$	0	1	0	1	_
	$\frac{6V}{16} < V_{in} < \frac{7V}{16}$	0	1	1	0	
	$\frac{7V}{16} < V_{in} < \frac{8V}{16}$	0	1	1	1	
	$\frac{8V}{16} < V_{in} < \frac{9V}{16}$	1	0	0	0	

Head Office : A/114-115, Smriti Nagar, Bhilai (C.G.), Contact : 9713113156, 9589894176 Branch Office : Raipur 🚫 : 79743-90037, Bhopal 🚫 : 89591-87052

www.gateacademy.co.in www. Facebook.com/gateacademy

GATE 2021 [Forenoon Session] Instrumentation Engineering

$\frac{9V}{16} < V_{in} < \frac{10V}{16}$	1	0	0	1
$\frac{10V}{16} < V_{in} < \frac{11V}{16}$	1	0	1	0
$\frac{11V}{16} < V_{in} < \frac{12V}{16}$	1	0	1	1
$\frac{12V}{16} < V_{in} < \frac{13V}{16}$	1	1	0	0
$\frac{13V}{16} < V_{in} < \frac{14V}{16}$		R	0	1
$\frac{14V}{16} < V_{in} < \frac{15V}{16}$	1	1	1	0
$\frac{15V}{16} < V_{in} < \frac{16V}{16}$	1	1	1	1

From the above table it is clear that, LSB will always flip from 0 to 1 or 1 to 0 when input voltage in changed by $\frac{V}{16}$. Hence B is also correct option.

Question 10

Control System (MCQ)

[2 Marks]

Consider a unity feedback configuration with a plant and a PID controller as shown in the figure.

$$G(s) = \frac{1}{(s+1)(s+3)}$$
 and $C(s) = K \frac{(s+3-j)(s+3+j)}{s}$

with K being scalar. The closed loop is

$$X(s) \xrightarrow{+} C(s) \xrightarrow{-} G(s) \xrightarrow{+} Y(s)$$

(A) Only stable for K > 0

(C) Stable for all values of K

(B) Only stable for *K* between -1 and +1(D) Only stable for K < 0

Ans. A

Sol. Given:
$$G(s) = \frac{1}{(s+1)(s+3)}$$
 nce 200

For PID controller,

$$C(s) = \frac{K(s+3-j)(s+3+j)}{s}$$
$$C(s) = K\left[\frac{(s+3)^2 + 1}{s}\right]$$
$$C(s) = K\left[\frac{s^2 + 6s + 10}{s}\right] = K\left[6 + \frac{10}{s} + s\right]$$

© Copyright

Branch Office : Raipur 🚫 : 79743-90037, Bhopal 🚫 : 89591-87052

www. **f**acebook.com/gateacademy

For the full bridge made of linear strain gages with gage factor 2 as shown in the diagram $R_1 = R_2 = R_3 = R_4 = 100 \ \Omega$ at 0°C and strain is 0. The temperature coefficient of resistance of the strain gages used is 0.005 per⁰C. All strain gages are made of same material and exposed to same temperature. While measuring a strain of 0.01 at a temperature of 50° C, the output V_0 in millivolt is _____ (rounded off to two decimal places). [2 Marks]

Ans. 0

Ans.

Sol.

© Copyright	Head Office : A/114-115, Smriti Nagar, Bhilai (C.G.), Contact : 9713113156, 9589894176	www.gateacademy.co.in
	Branch Office : Raipur 🔇 : 79743-90037, Bhopal 🔇 : 89591-87052	www. Macebook.com/gateacademy

PAGE 16	GATE Instrum	2021 [Forenoon Session] nentation Engineering	G A T E	GATE	ACADEMY steps to success
Quest	tion 16	M = 4		Engg. M	athematics (NAT)
	Given $A = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 2 & 5 \\ 0 & 3 \end{bmatrix}$. The value of the determinant $\begin{vmatrix} A^4 - 5A \end{vmatrix}$	$A^3 + 6A^2 + 2I$	=	[2 Marks]
Ans.	4				
Sol.	Given : A =	$\begin{bmatrix} 2 & 5 \\ 0 & 3 \end{bmatrix}$			
	Using Cayley	Hamilton theorem,	0		
		$ A - \lambda I = 0$			
		$\begin{vmatrix} 2-\lambda & 5\\ 0 & 3-\lambda \end{vmatrix} = 0$			
		$\lambda^2 - 5\lambda + 6 = 0$			
	Replacing λ	by A,			
	Now	$A^{2} - 5A + 6I = 0$ $A^{4} - 5A^{3} + 6A^{2} + 2I = A^{2}(A^{2} - 5A + 6) + 2$			(1)
	1100,	$A^{4} - 5A^{3} + 6A^{2} + 2I = A^{2} \times 0 + 2I = 2I$			
	Now,	$ A^4 - 5A^3 + 6A^2 + 2I = 2I_{2\times 2} = 4$			
	Hence, the co	prrect answer is 4.			
Quest	tion 17		Sensor & In	dustrial Inst	rumentation (NAT)
	A strain gage	e having nominal resistance of 1000Ω has m/m, its resistance in ohm will change to	a gage factor	\cdot of 2.5. If the	e strain applied to the
	gage is 100 µ	minin, its resistance in omini win change to _			[1 Mark]
Ans.	1000.25		-		
Sol.	Given : <i>R</i> =	1000 Ω , Gauge factor (<i>G.F</i>) = 2.5			1
	Strain =100	μm/m			
	According to	question we have to calculate the value of ΔR	$R+\Delta R$.) 4	
	Here,	$G.F = \frac{\overline{R}}{\varepsilon}$			
		$G.F \varepsilon R = \Delta R$			
		$2.5 \times 100 \times 10^{-6} \times 1000 = \Delta R$			
		$\Delta R = 0.25 \ \Omega$			
	: Resistan	ce will change to $R + \Delta R = 1000 + 0.25 = 10$	00.25Ω	.	
Quest	tion 18		Sensor & In	dustrial Inst	rumentation (NAT)

 Head Office : A/114-115, Smriti Nagar, Bhilai (C.G.), Contact : 9713113156, 9589894176
 www.gateacademy.co.in

 Branch Office : Raipur (\$: 79743-90037, Bhopal (\$: 89591-87052)
 www.facebook.com/gateacademy

GATE 2021 [Forenoon Session] **Instrumentation Engineering**

stebs to succe

Question 22 Optical Instrumentation (NAT) When the movable arm of a Michelson interferometer in vacuum (n = 1) is moved by 325 µm, the number of fringe crossings is 1000. The wavelength of the laser used in nanometers is . [1 Mark] Ans. 650 **Given :** Number of fringe crossing (n) = 100Sol. $\eta_c = 1 \rightarrow$ For vacuum $x = 325 \ \mu m$ Thus, path difference of moveable are = 2x... (i) Actual part difference due to fringe crossing $= n\lambda$... (ii) Equating equation (i) and (ii), $2x = n\lambda$ $2 \times x = (1000) \lambda$ $2 \times 325 \,\mu\text{m} = 1000 \,\lambda$ $650 \,\mu m = 1000 \,\lambda$ $650 \,\mathrm{nm} = \lambda$ **Question 23 Control System (NAT)** A sinusoidal $(\sqrt{2}\sin t)\mu(t)$, where $\mu(t)$ is the step input, is applied to a system with transfer-function $G(s) = \frac{1}{s+1}$. The amplitude of the steady state output is _____. [2 Marks] Ans. Given : $G(s) = \frac{1}{s+1}$ Sol. input $r(t) = A \sin \omega t = \sqrt{2} \sin t$ System Input Output r(t) $G(s) = \frac{1}{s+1}$ $rac{}c(t)$ Thus output is $c(t) = \sqrt{2} |G(j\omega)| \sin(t+\phi)$... (i) $\phi = \angle G(j\omega)$ Where From input $r(t) = \sqrt{2} \sin t$, it is clear that $\omega = \omega_0 = 1$ rad/sec $G(s) = \frac{1}{s+1}$ Here, Put $s = j\omega$, $G(j\omega) = \frac{1}{j\omega+1}$ $G(j\omega)\Big|_{\omega=\omega_0=1}=\frac{1}{i+1}$

© Copyright

www.gateacademy.co.in Head Office : A/114-115, Smriti Nagar, Bhilai (C.G.), Contact : 9713113156, 9589894176 Branch Office : Raipur 🔇 : 79743-90037, Bhopal 🔇 : 89591-87052

www. facebook.com/gateacademy

GATE 2021 [Forenoon Session] Instrumentation Engineering

$$|G(j\omega)|_{\omega=\omega_0=1} = \frac{1}{\sqrt{1^2 + 1^2}} = \frac{1}{\sqrt{2}}$$
$$\angle G(j\omega)|_{\omega=\omega_0=1} = \tan^{-1}\left(\frac{1}{1}\right) = 45^{\circ}$$

So, final output c(t) under steady state at $\omega = \omega_0 = 1$ rad/sec is (from equation (i))

 $c(t) = 1\sin(t + 45^\circ)$

Thus, amplitude of c(t) under steady state at $\omega = \omega_0 = 1$ rad/sec is 1.

Question 24

Communication System (NAT)

GATE ACA

Consider that x and y are independent continuous valued random variables with uniform PDF given by $x \sim U(2,3)$ and $y \sim U(1,4)$. Then $P(Y \le X)$ is equal to _____(rounded off to two decimal places).

[2 Marks]

steps to success

Ans. 0.5

Sol. Given pdf of random variable *x* and *y* is

$$f_{x}(x) \xrightarrow{1}_{2} f_{y}(y) \xrightarrow{1}_{4} y$$

$$P[x < X < x + dx, y < Y < y + dy] = f_{xy}(x, y) dx dy$$

$$P[2 < X < 3, 1 < Y < x] = \int_{2}^{3} \int_{2}^{x} f_{xy}(x, y) dx dy$$

$$P[Y \leq x] = \int_{2}^{3} \int_{1}^{x} f_{x}(x) f_{y}(y) dx dy$$

$$P[Y \leq x] = \frac{1}{3} \xrightarrow{3}_{2}^{1} [y]_{1}^{x} dx$$

$$P[Y \leq x] = \frac{1}{3} \int_{2}^{3} (x - 1) dx$$

$$P[Y \leq x] = \frac{1}{3} \left[\frac{x^{2}}{2} - x \right]_{2}^{3}$$

$$P[Y \leq x] = \frac{1}{3} [(4.5 - 3) - (2 - 2)]$$

$$P[Y \leq x] = \frac{1}{3} \times 1.5 = 0.5$$

Question 25

Communication System (NAT)

© Copyright	Head Office : A/114-115, Smriti Nagar, Bhilai (C.G.), Contact : 9713113156, 9589894176	www.gateacademy.co.in
	Branch Office : Raipur 🚫 : 79743-90037, Bhopal 🚫 : 89591-87052	www. f acebook.com/gateacademy

GATE 2021 [Forenoon Session] **Instrumentation Engineering**

GATE AC

An amplitude modulation (AM) scheme uses tone modulation, with modulation index of 0.6. The power efficiency of the AM scheme is ______% (rounded off to one decimal place) [1 Mark]

15.25 Ans.

Given : $\mu_a = 0.6$ Sol.

So efficiency of amplitude modulation is,

$$\%\eta = \frac{\mu_a^2}{2 + \mu_a^2} \times 100\%$$

$$\%\eta = \frac{(0.6)^2}{2 + (0.6)^2} \times 100\% = 15.25\%$$

Communication System (NAT)

www. facebook.com/gateacademy

Question 26

A signal having a bandwidth of 5 MHz is transmitted using the Pulse code modulation (PCM) scheme as follows. The signal is sampled at a rate 50% above the Nyquist rate and quantized into 256 levels. The binary pulse rate of the PCM signal in Mbits per second is _____. [2 Marks]

Ans. 120 Sol. Given : $BW = f_m = 5$ MHz Nyquist rate (N.R) = $2 \times BW = 2f_m = 2 \times 5 = 10$ MHz Sampling frequency, $f_s = 1.5 \times N.R$ $f_{s} = 1.5 \times 10 = 15$ MHz Given, $L = 256 = 2^n \longrightarrow$ Numbers of levels n = 8 bit \rightarrow it should be integer always Bit rate of PCM, $R_b = nf_s = 8 \times 15$ $R_{\rm h} = 120 \text{ Mbps}$ **Question 27** Signals & Systems (NAT) The input signal shown below0 0 0 0 is passed through the filter with the following taps 0 The number of non-zero output samples is . [2 Marks] 10 Ans. www.gateacademy.co.in Head Office : A/114-115, Smriti Nagar, Bhilai (C.G.), Contact : 9713113156, 9589894176 © Copyright

Branch Office : Raipur 🚫 : 79743-90037, Bhopal 🚫 : 89591-87052

Output of filter y[n] is given as

Question

$$y[n] = x[n] * h[n]$$

= x[n] * [-\delta[n+1] + 2\delta[n] - \delta[n-1]]
y[n] = -x[n+1] + 2x[n] - x[n-1]

Origin for input is not mentioned in the question but as we just have to find number of non-zero samples of y[n], so we can take origin at any sample.

...(i)

h[n]

Taxing origin at the left most sample and finding terms of R.H.S. of equation (i),

$$x[n] = \left\{ \frac{1}{2}, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1 \right\}$$

$$-x[n+1] = \left\{ -1, -\frac{1}{2}, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -3, -3, -3, -1, -1, -1, -1, 0 \right\}$$

$$2x[n] = \left\{ 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 6, 6, 2, 2, 2, 2 \right\}$$

$$-x[n-1] = \left\{ 0, \frac{0}{2}, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -3, -3, -3, -3, -1, -1, -1, -1 \right\}$$

$$y[n] = \left\{ -1, \frac{1}{2}, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, -1, -1, 0, 0, 2, -2, 0, 0, 1, -1 \right\}$$

Hence, the number of non-zero samples in output $y[n]$ is 10.
Signals & Systems (MCQ)
The input-output relationship of an LTI system is given below

GATE 2021 [Forenoon Session] Instrumentation Engineering

steps to success.

Ans. B

Sol. Given input-output relation and input x [n] are shown in figure

From figure-I, as the input applied is $\delta[n]$ i.e. impulse function, so its response is nothing but the impulse response of the given LTI system

$$\therefore \qquad h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$$

From figure-II,

$$X[n] = \delta[n] + 2 \delta[n-1]$$

Response of the system for input x[n] is given as

$$x[n] \rightarrow h[n] \qquad y[n]$$

::

$$y[n] = x[n] * h[n]$$

= { $\delta[n] + 2\delta[n-1]$ } * { $\delta[n] + 2\delta[n-1] + s[n-2]$ }
 $x[n] * \delta[n] = x[0]$
 $y[n] = \delta[n] + 2\delta[n-1] + \delta[n-2] + 2\delta[n-1] + 4\delta[n-2] + 2\delta[n-3]$
 $y[n] = \delta[n] + 4\delta[n-1] + 5\delta[n-2] + 2\delta[n-1]$

Output y[n] is plotted as shown in figure.

Hence, the peak value of y[n] is 5 & the correct options (B) Hence, the correct option is (B).

© Convright	Head Office : A/114-115, Smriti Nagar, Bhilai (C.G.), Contact : 9713113156, 9589894176	www.gateacademy.co.in
Copyright	Branch Office : Raipur 🔇 : 79743-90037, Bhopal 🔇 : 89591-87052	www. Macebook.com/gateacademy

GATE 2021 [Forenoon Session] GATE AC PAGE **Instrumentation Engineering** 24 steps to success. **Question 29** Signals & Systems (MCQ) Consider the sequence $x_n = 0.5 x_{n-1} + 1$, $n = 1, 2, \dots$ with $x_0 = 0$. Then $\lim x_n$ is [1 Mark] (B) 0 (C) 2 (A) ∞ (D) 1 Ans. C **Given :** $x_n = 0.5 x_{n-1} + 1$, n = 1, 2, 3...Sol. $\& x_0 = 0$ Method 1 : For limit, $(n-1) \rightarrow \infty$ So, $n \rightarrow \infty$ $\lim_{x \to \infty} x_n = \lim_{x \to \infty} 0.5 \quad x_{n-1} + 1$ *:*.. $x_{...} = 0.5 \quad x_{...} + 1$ $= 0.5 x_{...} = 1$ $x_{\infty} = \frac{1}{0.5} = 2$ *:*.. Hence, the correct option is (C) Method 2: Given $x_n = 0.5 x_{n-1} + 1$ $x_1 = 0.5 x_0 + 1 = 1$ $x_2 = 0.5 x_1 + 1 = 1.5$ $x_3 = 0.5 x_2 + 1 = 1.75$ $x_4 = 0.5 x_3 + 1 = 1.875$ $x_5 = 0.5 x_4 + 1 = 1.9375$ $x_6 = 0.5x_5 + 1 = 1.96875$ C 2004 $x_7 = 0.5 x_6 + 1 = 1.984375$ $x_8 = 0.5 x_7 + 1 = 1.9921875$ $x_9 = 0.5 x_8 + 1 = 1.99609375 \approx 2$ $x_{10} = 0.5 x_0 + 1 = 2$ $x_{11} = 0.5 x_{10} + 1 = 2$

© Copyright

© Copyright

GATE 2021 [Forenoon Session] Instrumentation Engineering

 \Rightarrow

$$y(t) = \int_{0}^{t+3} e^{-3\tau} d\tau = \left[\frac{e^{-3\tau}}{-3}\right]_{0}^{t+3}$$
$$y(t) = \frac{1}{3} \left[1 - e^{-3(t+3)}\right]$$
$$\lim_{t \to \infty} y(t) = \lim_{t \to \infty} \frac{1}{3} \left[1 - e^{-3(t+3)}\right]$$
$$\lim_{t \to \infty} y(t) = \frac{1}{3} \left[1 - e^{-\infty}\right] = \frac{1}{3} \left[1 - 0\right] = \frac{1}{3} = 0.33$$

Question 32

Signals & Systems (MCQ)

GATE ACA

steps to success

Let u(t) denote the unit step function. The bilateral Laplace transform of the function $f(t) = e^t u(-t)$ is [1 Mark]

(A)
$$\frac{1}{s-1}$$
 with real part of $s > 1$
(B) $\frac{1}{s-1}$ with real part of $s < 1$
(C) $\frac{-1}{s-1}$ with real part of $s > 1$
(D) $\frac{-1}{s-1}$ with real part of $s < 1$

Ans. D

Sol. Method 1 :

$$u(t) \xleftarrow{\text{LT}} \frac{1}{s}, \operatorname{Re}\{s\} > 0$$
$$u(-t) \xleftarrow{\text{LT}} \frac{-1}{s}, \operatorname{Re}\{s\} < 0$$
$$e^{t}u(-t) \xleftarrow{\text{LT}} \frac{-1}{s-1}, \operatorname{Re}\{s\} < 0$$

[Using time reversal property]

[Using frequency shifting property]

Hence, the correct option is (D).

Method 2 :

$$f(t) = e^{t}u(-t)$$

$$F(s) = \int_{-\infty}^{\infty} f(t)e^{-st}dt$$

$$F(s) = \int_{-\infty}^{\infty} e^{t}u(-t)e^{-st}dt = \int_{-\infty}^{0} e^{t}e^{-st}dt$$

$$F(s) = \int_{-\infty}^{0} e^{(1-s)t}dt = \left[\frac{e^{(1-s)t}}{(1-s)}\right]_{-\infty}^{0} = \frac{1-0}{1-s}$$

$$F(s) = \frac{-1}{s-1}$$

As f(t) is left sided, hence, ROC of rational Laplace transform will be left to the left most pole.

GATE 2021 [Forenoon Session] Instrumentation Engineering

 $F(s) = \frac{-1}{s-1}, \operatorname{Re}\{s\} < 1$

Hence, the correct option is (D).

Question 33

Taking N as positive for clockwise encirclement, otherwise negative, the number of encirclements N of

(-1, 0) in the Nyquist plot of
$$G(s) = \frac{3}{s-1}$$
 is _____. [1 Mark]

Ans. -1

Sol. Given : $G(s) = \frac{3}{s-1}$

Magnitude, $|G(j\omega)| = \frac{3}{\sqrt{\omega^2 + 1}}$

Phase angle,
$$\angle G(j\omega) = -180^{\circ} + \tan^{-1} \left(\frac{\omega}{1}\right)$$

Magnitude and phase table is given by,

ω	Mag <mark>nitu</mark> de G(<i>j</i> ω)	Phase angle $\angle G(j\omega)$
0	3	-180°
∞	0	<mark>-9</mark> 0°

Nyquist plot for G(s) is shown below,

N = -1

Since, N is the positive for clockwise encirclement and negative for anticlockwise encirclement. Here, encirclement of critical point (-1 + j0) is in anticlockwise direction.

So that,

Question 34

Analog Electronics (MCQ)

The output V_0 of the ideal OpAmp used in circuit shown below is 5 V. Then the value of resistor R_L in kilo ohm (k Ω) is [2 Marks]

Control System (NAT)

Given that the Op-Amp is ideal, therefore virtual ground conditions will hold true. Let the potential at R_L is V_A

Now, by voltage divider rule,

$$V_A = V_0 \times \frac{R_L}{R_L + 10} \qquad \dots (i)$$

By virtual ground concept V_A will also appear at the inverting terminal.

Branch Office : Raipur 🔇 : 79743-90037, Bhopal 🔇 : 89591-87052

www. Macebook.com/gateacademy

A single-phase transformer has a magnetizing inductance of 250 mH and a core loss resistance of 300 Ω referred to primary side. When excited with a 230 V, 50 Hz sinusoidal supply at the primary, the power factor of the input current drawn with secondary on open circuit, is _____ (rounded off to two decimal places) [1 Mark]

Ans. 0.253

Sol. Method 1 :

As we know from equivalent circuit of transformer under no load condition,

$$I_1 = I_0 + I_1'$$

Under no load condition, $\vec{I}_1' = 0$ A

, , ,

So,

Applying nodal analysis at node A,

www.gateacademy.co.in

GATE 2021 [Forenoon Session] Instrumentation Engineering

$$\frac{V}{jX_m} + \frac{V}{R_c} - I_0 = 0$$

$$I_0 = \frac{V}{jX_m} + \frac{V}{R_c}$$

$$\overline{I_0} = \frac{230\angle 0^0}{j2\pi\times 50\times 250\times 10^{-3}} + \frac{230\angle 0^0}{300}$$

$$\overline{I_0} = -j0.2929 + 0.766$$

$$\overline{I_0} = 0.766 - j0.2929$$

$$\overline{I_0} = 3.02\angle -75.34^0 \text{ A}$$

$$\cos\phi = \cos(-75.34^0) = 0.253 \text{ lag}$$

Method 2:

Equivalent circuit under noload condition is given by,

Where

www. Macebook.com/gateacademy

GATE ACA

steps to success

Mean radius, $r_m = \frac{r_1 + r_2}{2} = \frac{5 + 7}{2} = 6 \text{ cm}$

GATE 2021 [Forenoon Session] **Instrumentation Engineering**

Mean length, $l_m = 2\pi r_m = 2\pi \times 6 \text{ cm}$

 $l_m = 2\pi \times 6 \times 10^{-2} \mathrm{m}$

We know, in any magnetic core,

$$B = \mu H$$

$$B = \mu_0 \mu_r \left(\frac{NI}{l_{mean}}\right)$$

$$B = 4\pi \times 10^{-7} \times 3000 \times \left(\frac{200 \times 5 \times 10^{-3}}{2\pi \times 6 \times 10^{-2}}\right)$$

$$B = 10 - \pi - 1$$

B = 10 m Tesla

Question 37

Electrical Machine (MCQ)

...(i)

A slip-ring induction motor is expected to be started by adding extra resistance in the rotor circuit. The benefit that is derived by adding extra resistance in the rotor circuit in comparison to the rotor being shorted is [2 Marks]

- (A) The power factor at start will be lower.
- (C) The losses at starting will be lower.

Ans. B

Sol. From option (A) :

Rotor power factor $B = \cos \theta_2 = \frac{R_2}{\sqrt{R_2^2 + (SX_2)^2}}$

Rotor power factor under standstill condition,

$$\cos\theta_{st} = \frac{R_2}{\sqrt{R_2^2 + X_2^2}}$$

Generally, order of rotor resistance/ph for SRIM = 0.2Ω

order of standstill reactance/ph for SRIM = 2Ω

In equation (i),

As $R_2^2 \ll X_2^2$, so R_2^2 is neglected.

...

As rotor resistance increases due to external resistance, power factor at starting will be higher. Conclusion : Option (A) is not correct.

 $\cos \theta_{st} = \frac{R_2}{\sqrt{0 + X_2^2}} = \frac{R_2}{X_2}$ **C O O O**

From option (B) :

Starting torque,

$$T_{st} = \frac{180}{2\pi N_s} \times \frac{E_2^2 R_2}{R_2^2 + X_2^2} \qquad \dots (ii)$$

In equation (ii),

www.gateacademy.co.in Head Office : A/114-115, Smriti Nagar, Bhilai (C.G.), Contact : 9713113156, 9589894176 © Copyright www. Macebook.com/gateacademy Branch Office : Raipur 🔇 : 79743-90037, Bhopal 🔇 : 89591-87052

(B) The starting torque would be higher.

(D) The starting current is higher.

GATE 2021 [Forenoon Session] Instrumentation Engineering

As $R_2^2 \ll X_2^2$, so R_2^2 is neglected.

...

$$T_{st} = \frac{180}{2\pi N_s} \times \frac{E_2^2 R_2}{X_2^2}$$
$$T_{st} \propto R_2$$

As rotor resistance increases, starting toque will be increased.

Conclusion : Option (B) is correct.

From option (C) :

Rotor current is very small at standstill so rotor copper loss is also lower.

Conclusion : Option (C) is correct.

From option (D) :

Starting current, $I_{st} = \frac{V}{R_{01} + jX_{01}}$

As resistance is increased, starting circuit of motor will be reduced.

Conclusion : Option (D) is not correct.

Note : This is a MCQ question hence, the most appropriate answer is option (B).

Question 38

Consider the function $f(x) = -x^2 + 10x + 100$. The minimum value of the function in the interval [5, 10] is . [1 Mark]

Ans. 100

Sol.	Given :	$f(x) = -x^2 + 10x + 100$
	Stationary p	oint (extrema)

int (extrema) f'(x) = -2x + 10 = 0

Double derivative,

Means x = 5 is the point of maxima

f''(x) = -2

Minimum $f(x), x \in [5, 10]$

Minimum [f(5), f(10)] = 100

Hence, the correct answer is 100.

Question 39

Engg. Mathematics (MCQ)

Engg. Mathematics (NAT)

Consider the row vectors V = (1, 0), W = (2, 0). The rank of the matrix $M = 2V^T V + 3W^T W$, where the superscript the transpose, is [1 Mark]

© Convright	Head Office : A/114-115, Smriti Nagar, Bhilai (C.G.), Contact : 9713113156, 9589894176	www.gateacademy.co.in
Copyright	Branch Office : Raipur 🚫 : 79743-90037, Bhopal 🚫 : 89591-87052	www. 🖬 acebook.com/gateacademy

ce 2

Y = Young's Modulus and S = Stress applied. Based on equations (i), (ii) and (iii) and sensitivity data provided we conclude $V_B = 1 \text{mV}$ $V_s = 1 \text{V}$ $S = 10^3 \text{Pa}$ ∴ For 1 V applied and stress of 10³Pa we get output voltage = 1×10⁻³ V Since, actual V_s is 10 V. ∴ Actual senstivity = 10 mV/V/kPa Resolution of the DVM = $\frac{\text{FSV}}{\text{Number of counts}} = \frac{200}{2000} = 0.1 \text{ mV}$ (iv) ∴ Resolution in terms of applied stress = $\frac{0.1 \text{ mV}}{10 \text{ mV/V/kPa}} = 10 \text{ Pa}$

Question 41

Optical & Communication (NAT)

In the figure shown, a large multimode fiber with $n_{core} = 1.5$ and $n_{clad} = 1.2$ is used for sensing. A portion with the cladding removed passes through a liquid with refractive index n_{liquid} . An LED is used to illuminate the fiber from one end and a paper is placed on the other end, 1 cm from the end of the fiber. The paper shows a spot with radius 1 cm. The refractive index n_{liquid} of the liquid (rounded off to two decimal places) is _____. [2 Marks]

Branch Office : Raipur 🚫 : 79743-90037, Bhopal 🔇 : 89591-87052

www. facebook.com/gateacademy

GATE 2021 [Forenoon Session] Instrumentation Engineering

$$R_4 = \frac{110}{100} \times 90 = \frac{9900}{100}$$
$$R_4 = 99\,\Omega$$

Question 43

Electromagnetic Theory (MCQ)

stebs to succe

GATE ACA

An infinitely long line, with uniform positive charge density, lies along the z-axis. In cylindrical coordinates (r, ϕ, z) , at any point \vec{P} not on the z-axis, the direction of the electric field is [1 Mark]

(A) \hat{z} (B) $\frac{\hat{r} + \hat{z}}{\sqrt{2}}$ (C) \hat{r} (D) $\hat{\phi}$

Ans. C

Sol. The expression of Electric field (\vec{E})-at any arbitrary point *P*, from initially long line change is,

If infinite line charge is kept on z-axis, hence the direction would be in the direction of \hat{r} . Hence, the correct option is (C).

Question 44

Control System (MSQ)

The step response of a circuit is seen to have an oscillatory behaviour at the output with oscillations dying down after some time. The correct inference(s) regrading the transfer function from input to output is/are

[1 Mark]

- (A) that it is of at least second order.
- (B) that it has at least one pole-pair that is underdamped.
- (C) that it does not have a real pole.
- (D) that it is a first order system.

Ans. A, B, C

Sol. For oscillation there should be atleast two energy storing element i.e. order must be atleast 2. As given in question step response has oscillatory behaviour at output with oscillation dying after some time. This happens when we have complex conjugate poles (i.e. response is under damped in nature i.e. $0 < \xi < 1$.

© Copyright

www.gateacademy.co.in

GATE 2021 [Forenoon Session] Instrumentation Engineering

steps to success.

GATE A

© Convright	Head Office : A/114-115, Smriti Nagar, Bhilai (C.G.), Contact : 9713113156, 9589894176	www.gateacademy.co.in
Copyright	Branch Office : Raipur 🚫 : 79743-90037, Bhopal 🚫 : 89591-87052	www. Macebook.com/gateacademy

GATE ACADEMY steps to success...

An air core coil having a winding resistance of 10Ω is connected in series with a variable capacitor C_x . The series circuit is excited by a 10 V sinusoidal voltage source of angular frequency 1000 rad/s. As the

© Convright	Head Office : A/114-115, Smriti Nagar, Bhilai (C.G.), Contact : 9713113156, 9589894176	www.gateacademy.co.in	
Copyright	Branch Office : Raipur 🚫 : 79743-90037, Bhopal 🚫 : 89591-87052	www. Macebook.com/gateacademy	

Question 49

A 16-bit microprocessor has twenty address lines $(A_0 \text{ to } A_{19})$ and 16 data lines. The higher eight significant lines of the data bus of the processor are tied to the 8 data lines of a 16 Kbyte memory that can store 1-byte in each of its 16 K address location. The memory chip should map onto contiguous memory locations and occupy only 16 Kbyte of memory space. Which of the following statement(s) is/are correct with respect to the above design? [1 Mark]

Microprocessor (MCQ)

- (A) If the 16 Kbyte of memory chip is mapped with a starting address of 80000H, then the ending address will be 83FFFH.
- (B) The active high chip-select needed to map 16 Kbyte memory with starting address at F0000H is given by the logic expression $(A_{19}, A_{18}, A_{17}, A_{16})$.
- (C) The 16 Kbyte memory cannot be mapped with continuous address location with a starting address as 0F000H using only A_{19} to A_{14} for generating chip select.
- (D) The above chip cannot be interfaced as the width of the data bus of the processor and memory chip differs.

Ans. A, B, C

```
Sol. 16 kB memory = 2^4 k \times 8 = 2^4 \times 10^{10} \times 8 = 2^{14} \times 8
```

: 14 address lines and 8 data lines are required.

Since, 8 data lines of processor is available for memory. So connection is possible. So, option (D) is wrong

A_{13}	A_{12}	A_{11}	A_{10}	A_9	A_8	A_7	A_{6}	A_5	A_4	A_3	A_2	A_{l}	A_{0}	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000 H
1	1	1	1	1	1	1		E	1	1	1	1	1	3FFFH

Offset = 3FFFH - 0000H = 3FFFH

Now if starting address is 80000H, then

Ending address = Starting address + Offset

$$= 80000 H + 3 FFFH = 83FFFH$$

So, option (A) is correct.

Given in option (B) active high chip select (Cs) is needed.

If $A_{19}A_{18}A_{17}A_{16}$ is the input to CS then to enable chip this function should be 1. Now starting address is F0000H and ending address will be (F0000H + 3FFFH = F3FFFFH)

© Convright	Head Office : A/114-115, Smriti Nagar, Bhilai (C.G.), Contact : 9713113156, 9589894176	www.gateacademy.co.in	
Copyright	Branch Office : Raipur 🚫 : 79743-90037, Bhopal 🚫 : 89591-87052	www. facebook.com/gateacademy	

PAGE 45	G. In	ATE 2021 [Forenoon Session] strumentation Engineering	E ACADEMY steps to success
45 Quest Ans. Sol.	In A_{19} 1 1 Now, So, op If star A (For the for che Hence ion 50 A bar ratio prima 5 Given $N_p =$ R = T k = N R = k $\cos \phi$ $N_s =$ Ratio Phase $\delta = 0$ $\cos \delta$ $\sin \delta =$	strumentation Engineering A ₁₈ A ₁₇ A ₁₆ A ₁₅ A ₄ A ₁₃ A ₁₂ A ₁₁ A ₁₀ A, A ₈ A ₇ A ₆ A ₈ A A 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	Steps to success $A_4 A_3 A_2 A_1 A_0$ 0 0 0 0 1 1 1 1 the used for chip select. FH $A_1 A_0$ 0 0 1 1 ess lines only can be used Measurement (NAT) lary turns. It exhibits zero att loss component of the ce). [2 Marks]
		Head Office : A/114-115, Smriti Nagar, Bhilai (C.G.), Contact : 9713113156, 9589894176	www.gateacademv.co.in
© Copy	yright	Branch Office : Raipur 🚫 : 79743-90037, Bhopal 🚫 : 89591-87052	www. facebook.com/gateacademy

Branch Office : Raipur 🔇 : 79743-90037, Bhopal 🔇 : 89591-87052

www. facebook.com/gateacademy

Rranch O

Branch Office : Raipur 🔇 : 79743-90037, Bhopal 🚫 : 89591-87052

www. Macebook.com/gateacademy

- (ii) $R_1 = 0.5 \Omega$
- (iii) $I_{1(rated)} = 25 \text{ A}$

 Copyright
 Head Office : A/114-115, Smriti Nagar, Bhilai (C.G.), Contact : 9713113156, 9589894176
 www.gateacademy.co.in

 Branch Office : Raipur (\$: 79743-90037, Bhopal (\$: 89591-87052)
 www.facebook.com/gateacademy

GATE 2021 [Forenoon Session] Instrumentation Engineering

(iv) $\eta = 98\% = 0.98$

Transformer efficiency is given by,

$$\eta = \frac{xS\cos\phi}{xS\cos\phi + P_{core} + x^2 P_{conner}}$$

For maximum efficiency, $x^2 P_{copper} = P_{core}$

 $x^{2}I_{1}^{2}R_{1} = P_{core}$ $x^{2} \times 25^{2} \times 0.5 = 80$ x = 0.5059% x = 0.5059 × 100 = 50.6%

Question 56

Aptitude

Following shape has equal length segments *PR*, *PS*, *QS*, *TR* and *TQ* are of equal length, what will be the angle θ ? [2 Marks]

General Aptitude

PAGE 53	G. In	ATE 2021 [F strumentation	Forenoon Session Engineering	l]	G A T E	GAT	E ACADEMY steps to success
	(C) I	P marries Q and X n	narries Y.	(D)	X does not ma	rries Y a	and P marries Q.
Ans.	A						
Sol.	As w "Neit	ve are directed to d her nor"	o logical negation, of	given st	atement, situat	tion of "	either or" will becomes
	as :		$\mathbf{P} = \mathbf{Q}$	X =	Y		
	Nega	tion :	P≠Q	X≠	Y		
	Henc	e, the correct option	is (A).				
Quest	ion 61		~ /		2		Aptitude
	Four order many	persons P, Q, R and P and R can not b distinct seating arra	S are to be seated in a seated adjacent to ea angement is possible?	row, faci ch other, (C)	ng same directi S should be so	ion, but r eated to	not necessary in the same the right of Q, then how [1 Mark]
Ans.	D	•		(0)		,	
Sol.	Cond	lition 1 : P and R ca	n not sit adjacent to each	ch other.			
	Cond	lition 2 : S should b	e seated to the right of	0.			
	Acco	rding to this all poss	sible cases will be				
	1. (Q P S R					
	2. 0	Q R S P					
	3. I	PQSR					
	4. I	RQSP					
	5. I	PQRS					
	6. I	RQPS					
	Henc	e, the correct option	is (D).		_		
Quest	ion 62	2 (C					Aptitude
	Const	ider two rectangular	sheets, M and N of ide	entical di	mensions of 62	×4 cm e	ach
	Foldi	ng operation (i) : Th	e sheet is folded into h	alf by jo	ining the short	edges of	the current shape.
	Foldi	ng operation (ii) : T	he sheet is folded into l	half by jo	oining the long	edges of	the current shape.
	Foldi	ng operation (i) is c	arried out on sheet M 3	times.		_	
	Foldi	ng operation (ii) is c	carried out on sheet N 3	times.			
	The r	atio of perimeters of	f the final folded shape	of sheet	N to the final f	folded sh	ape of sheet M is.
							[2 Marks]
	(A) 3	3:2	(B) 7:5	(C)	13:7	((D) 5:13
Ans.	С						
Sol.	Acco	rding to given data,	we can proceed step by	v step as	given below,		
© Cop	yright	Head Office : A/114-11	5, Smriti Nagar, Bhilai (C.G.), Contact	: 9713113156, 9589	9894176	www.gateacademy.co.in

Branch Office : Raipur 🔇 : 79743-90037, Bhopal 🔇 : 89591-87052

www. 🛐 acebook.com/gateacademy

PAGE 55	GA Ins	TE (trum	2021 [entatio	Foreno n Engii	on Sessi neering	ion]	G A		ATE A	CADEMY steps to success
	∵ ∴ Hence	, the co	$p = q = 1$ $\lambda(1, 1) =$ rrect optio	$(1-1)^2 = 0$)					
Quest	tion 64	,								Aptitude
	Gettin	g to the	top is	than s	staying in t	op				[1 Mark]
	(A) E	asier		(B) Mo	ore Easier		(C) Much Ea	asier	(D)]	Easiest
Ans. Sol.	A Gettin Hence	g to the , the co	top is <i>eas</i> rrect optio	<i>er</i> than st n is (A).	aying in to	p.	R			Antitudo
QUES	Huma World differe to abo	n have So far ent word ve, which	the ability as we kno ls to refer t ch of the f	to constru ow, no oth o its differ ollowing i	uct worlds her species rent factors s correct?	entirely possess , such as	in their mind this ability. imagination	ls, which This skii , inventic	n does not Il is so imp on and inno	Aptitude exist in the physical portant that we have ovation. With respect [2 Marks]
	(A) T	he term	s imaginat	ion, inven	t <mark>ion an</mark> d in	novatio	n refer to unr	elated sk	ills.	
	(B) N	o speci	es possess	the ability	<mark>/ to</mark> constru	ict world	ds <mark>in their m</mark> i	nd.		
	(C) Ir	naginat	ion, invent	ion and ir	novation a	re un-re	lated to the a	bility to	construct n	nental worlds.
	(D) W	le don't	t know of a	any specie	<mark>s other tha</mark>	n humai	ns who <mark>pos</mark> se:	s the abil	ity to cons	truct mental worlds.
Ans.	D	• .1	. /	(· • • • • • •
SOI.	As giv	en in th	ne above p on D is cor	assage "so rect	o far as we	know,	no other spec	eies poss	es this abil	ity". By this we can
		ar opn								

					-					
			G		A		Т			
			S	ir	1 C	е	20	0	4	
© Cop	yright	Head Of	fice : A/114-1	15, Smriti N	agar, Bhilai (C.G.), Co	ntact : 97131131	56, 958989	4176 ww	w.gateacademy.co.in
			Branch	Once : Raipu	ir 🔽 : 79743-90	us7, Bhopa	i 🕎 : 89591-87052		www.	<pre>acebook.com/gateacadem</pre>