Technical Section

Question 1

Control System (NAT)

Consider a system with transfer-function $G(s)=\frac{2}{s+1}$. A unit step function $\mu(t)$ is applied to the system, which results in an output $y(t)$. If $e(t)=y(t)-\mu(t)$, then $\lim _{t \rightarrow \infty} e(t)$ is \qquad .
[2 Marks]
Ans. 1
Sol. Given :
Transfer function $G(s)=\frac{2}{s+1}=\frac{Y(s)}{R(s)}$
Here, input $r(t)$ is step function,
i.e.

$$
r(t)=\mu(t)
$$

So, $\quad R(s)=\frac{1}{s}$
Thus, output $Y(s)$ is,

$$
\begin{aligned}
& Y(s)=G(s) R(s) \\
& Y(s)=\left(\frac{2}{s+1}\right) R(s)=\frac{2}{s+1} \times \frac{1}{s}
\end{aligned}
$$

By final value theorem,

$$
\lim _{t \rightarrow \infty} y(t)=y(\infty)=\lim _{s \rightarrow 0} s Y(s)=\lim _{s \rightarrow 0} s\left[\frac{2}{s(s+1)}\right]=\lim _{s \rightarrow 0} \frac{2}{s+1}=2
$$

Given

$$
e(t)=y(t)-\mu(t)
$$

So,

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} e(t)=\lim _{t \rightarrow \infty} y(t)-\lim _{t \rightarrow \infty} \mu(t) \\
& e(\infty)=y(\infty)-\mu(\infty)=2-1=1
\end{aligned}
$$

Question 2

The circuit shown below uses an ideal OpAmp. Output V_{0} in volt is \qquad (rounded off to one decimal place).

[2 Marks]

Ans. 1.05
Sol. The given circuit is shown below,

By virtual ground concept $V_{I}=V_{N I}=50 \mathrm{mV}$
Applying KCL at $\left(V_{I}\right)$ inverting terminal,

$$
\begin{aligned}
& \frac{V_{I}-0}{12 K}+\frac{V_{I}-V_{x}}{10 K}=0 \\
& \frac{50 \mathrm{mV}-0}{12 \mathrm{~K}}+\frac{50 \mathrm{mV}-V_{x}}{10 K}=0 \\
& \frac{50}{12} \mathrm{mV}+\frac{50}{10} \mathrm{mV}=\frac{V_{x}}{10} \\
& V_{x}=50 \mathrm{mV}+\frac{500}{12} \mathrm{mV} \\
& V_{x}=91.66 \mathrm{mV}
\end{aligned}
$$

Apply KCL at V_{x},

$$
\begin{aligned}
& \frac{V_{x}-50}{10}+\frac{V_{x}}{1}+\frac{V_{x}-V_{0}}{10}=0 \\
& V_{x}-50+10 V_{x}+V_{x}-V_{0}=0 \\
& 12 V_{x}-50=V_{0} \\
& V_{0}=12\left[50 \mathrm{mV}+\frac{500 \mathrm{mV}}{12}\right]-50 \\
& V_{0}=600 \mathrm{mV}+500 \mathrm{mV}-50 \mathrm{mV} \\
& V_{0}=1050 \mathrm{mV}=1.05 \mathrm{~V}
\end{aligned}
$$

Question 3
A 4×1 multiplexer with two selection line is used to realize Boolean function F^{-}having four Boolean variable x, y, z and w as shown in below, S_{0} and S_{1} denote the least significant bit (LSB) and most significant bit (MSB) of the selector lines of multiplexer respectively. $I_{0}, I_{1}, I_{2}, I_{3}$ are input lines of the multiplexer.

The canonical sum of product representation of F is
(A) $F(x, y, z, w)=\Sigma m(2,5,9,11,14)$
(B) $F(x, y, z, w)=\Sigma m(0,1,3,14,15)$
(C) $F(x, y, z, w)=\Sigma m(0,1,3,11,14)$
(D) $F(x, y, z, w)=\Sigma m(1,3,7,9,15)$

Ans. C
Sol. Given 4×1 MUX have,
Input lines: $I_{0}=\bar{z}+w, I_{1}=0$

$$
I_{2}=z w, I_{3}=z \bar{w}
$$

Selection lines: $S_{1}=x, S_{0}=y$
Output equation of 4×1 MUX

$$
\begin{aligned}
& F=\bar{S}_{1} \bar{S}_{0} I_{0}+\bar{S}_{1} S_{0} I_{1}+S_{1} \bar{S}_{0} I_{2}+S_{1} S_{0} I_{3} \\
& F=\bar{x} \bar{y}(\bar{z}+w)+\bar{x} y \cdot 0+x \bar{y} z w+x y z \bar{w} \\
& F=\bar{x} \bar{y} \bar{z}+\bar{x} \bar{y} w+0+x \bar{y} z w+x y z \bar{w} \\
& F=\Sigma m(000 \mathrm{X}, 00 \mathrm{X} 1,1011,1110) \\
& F=\Sigma m(0,1,1,3,11,14) \\
& F=\Sigma m(0,1,3,11,14)
\end{aligned}
$$

Question 4
The diode used in the circuit has a fixed voltage drop of 0.6 V when forward biased. A signal V_{s} is given to the ideal OpAmp as shown. When V_{s} is at its positive peak, the output $\left(V_{O A}\right)$ of the Op-Amp in volts is
\qquad .

Ans. 1
Sol. Assuming diode to be open circuited, the given circuit becomes as,

Now Op-Amp work as a comparator circuit,
If,

$$
\begin{aligned}
& V_{s}>0 \\
& V_{N I}>V_{I} \\
& V_{O A}=+V_{\text {sat }} \\
& V_{O C}>0
\end{aligned}
$$

So,
It means, diode is ON and virtual ground concept is valid.
Now, equivalent circuit, and replace diode by 0.6 V battery as,

Thus,

$$
\begin{aligned}
& V_{O A}=0.6+V_{s} \\
& V_{O A(\max)}=0.6+\left(V_{S}\right)_{\max } \\
& V_{O A(\max)}=0.6+0.4=1 \mathrm{~V}
\end{aligned}
$$

Question 5
A household fan consumes 60 W and draws a current of 0.3125 A (rms) when connected to a 230 V (rms) ac, 50 Hz single phase mains. The reactive power drawn by the fan in VAR is \qquad (rounded off to the nearest integer).
Ans. 39.53
Sol. Given : True power $P=60 \mathrm{~W}$
$I_{r m s}=0.3125 \mathrm{~A}$ and $V_{r m s}=230 \mathrm{~V}$
Reactive power, $Q=$?
So true power, $P=V_{r m s} I_{r m s} \cos \phi$

$$
\begin{aligned}
& 60=230 \times 0.3125 \cos \phi \\
& \cos \phi=\frac{60}{230 \times 0.3125}=0.835
\end{aligned}
$$

We can calculate $\sin \phi$ as,

$$
\sin \phi=\sqrt{1-\cos ^{2} \phi}
$$

$$
\sin \phi=\sqrt{1-0.835^{2}}=0.55
$$

Thus reactive power Q,

$$
\begin{aligned}
& Q=V_{r m s} I_{r m s} \sin \phi \\
& Q=230 \times 0.3125 \times 0.55=39.53 \mathrm{VAR}
\end{aligned}
$$

Question 6

Digital Electronics (MCQ)

Given below is the diagram of a synchronous sequential circuit with one J-K flip-flop and one T flip-flop with their outputs denoted as A and B respectively, with $J_{A}=(\bar{A}+\bar{B}), K_{A}=(A+B)$ and $T_{B}=A$,

Starting from the initial state $(A B=00)$, the sequence of states $(A B)$ visited by the circuit is
[2 Marks]
(A) $00 \rightarrow 10 \rightarrow 11 \rightarrow 01 \rightarrow 00 \ldots$.
(B) $00 \rightarrow 01 \rightarrow 10 \rightarrow 11 \rightarrow 00 \ldots$.
(C) $00 \rightarrow 10 \rightarrow 01 \rightarrow 11 \rightarrow 00 \ldots$
(D) $00 \rightarrow 01 \rightarrow 11 \rightarrow 00 \ldots$.

Ans. C
Sol. Given circuit is synchronous sequential circuit. Thus next state equation of FF A,

$$
\begin{aligned}
Q_{A+1} & =J_{A} \bar{Q}_{A}+\bar{K}_{A} Q_{A} \\
Q_{A+1} & =\left(\bar{Q}_{A}+\bar{Q}_{B}\right) \bar{Q}_{A}+\left(\overline{Q_{A}+Q_{B}}\right) Q_{A} \\
Q_{A+1} & =\bar{Q}_{A}+\bar{Q}_{A} \bar{Q}_{B}+\bar{Q}_{A} \bar{Q}_{B} Q_{A} \\
Q_{A+1} & =\bar{Q}_{A}
\end{aligned}
$$

Next state equation of FF B,

$$
\begin{aligned}
Q_{B+1} & =T_{B} \oplus Q_{B} \\
Q_{B+1} & =Q_{A} \oplus Q_{B}
\end{aligned}
$$

State transition table,

Clock	Present state		Next State	
	$\boldsymbol{Q}_{\boldsymbol{A}}$	$\boldsymbol{Q}_{\boldsymbol{B}}$	$\boldsymbol{Q}_{\boldsymbol{A + 1}}=\overline{\boldsymbol{Q}}_{\boldsymbol{A}}$	$\boldsymbol{Q}_{\boldsymbol{B}+1}=\boldsymbol{Q}_{\boldsymbol{A}} \oplus \boldsymbol{Q}_{\boldsymbol{B}}$
1	0	0	1	0
2	0	1	1	1
3	1	0	0	1
4	1	1	0	0

State sequence is as follows,

$$
00,10,01,11,00
$$

\qquad
Hence, the correct answer is (C).

Question 7

Analog Electronics (NAT)

All the transistors used in the circuit are matched and have a current gain β of 20. Neglecting the Early effect, the current I_{04} in milliampere is \qquad .

Ans. 1
Sol. Given circuit is shown below, (all transistor are identical)

From figure, it is clear that,

$$
\begin{aligned}
& 1.25 \mathrm{~mA}=I_{C}+5 I_{B} \\
& V_{B E 1}=V_{B E 2}=V_{B E 3}=V_{B E 4}=V_{B E 5} \\
& I_{C}=\beta I_{B} \\
& I_{B}=\frac{I_{C}}{\beta}
\end{aligned}
$$

Now equation (i) becomes as,

$$
\begin{array}{ll}
\therefore & 1.25 \mathrm{~mA}=I_{C}+5 \times \frac{I_{C}}{\beta}=I_{C}\left[1+\frac{5}{\beta}\right] \\
\therefore & I_{C}=\frac{1.25 \mathrm{~mA}}{\left(1+\frac{5}{\beta}\right)}
\end{array}
$$

$$
\Rightarrow \quad I_{C}=\frac{1.25}{1.25}=1 \mathrm{~mA}
$$

Question 8

Digital Electronics (MCQ)
A Boolean function F of three variables x, y and z is given as

$$
F(x, y, z)=\left(x^{\prime}+y+z\right) \cdot\left(x+y^{\prime}+z^{\prime}\right) \cdot\left(x^{\prime}+y+z^{\prime}\right) \cdot\left(x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x y z^{\prime}\right)
$$

Which one of the following is true?
[2 Marks]
(A) $F(x, y, z)=\left(x^{\prime}+y\right)\left(x+y^{\prime}+z^{\prime}\right)$
(B) $F(x, y, z)=\left(x+y+z^{\prime}\right)\left(x^{\prime}+y^{\prime}+z^{\prime}\right)$
(C) $F(x, y, z)=x^{\prime} y^{\prime} z+x y z$
(D) $F(x, y, z)=x^{\prime} z^{\prime}+y z^{\prime}$

Ans. D
Sol. Method 1 :
Given 3-variable Boolean function,
$F[x, y, z]=,(\bar{x}+y+z)(x+\bar{y}+\bar{z})(\bar{x}+y+z)(\bar{x} \bar{y} \bar{z}+\bar{x} y \bar{z}+x y \bar{z})$
$F[x, y, z]=,(\bar{x}+y+z)(x+\bar{y}+\bar{z})[\bar{x} \bar{z}(y+\bar{y})+y \bar{z}(x+\bar{x})] \quad[\because y+\bar{y}=x+\bar{x}=1]$
$F[x, y, z]=[\bar{x}+y+z][x+\bar{y}+\bar{z}](\bar{x}+y+z)[\bar{x} \bar{z}+y \bar{z}]$
Converting $\bar{x} \bar{z}+y \bar{z}$ in standard POS format as,
$\bar{x} \bar{z}+y \bar{z}=(\bar{x}+y+x)(\bar{x}+y+\bar{z})(x+y+\bar{z})(x+\bar{y}+\bar{z})(\bar{x}+y+\bar{z})(\bar{x}+\bar{y}+\bar{z})$
So, equation (i) become as,
$F[x, y, z]=(\bar{x}+y+z)(x+\bar{y}+\bar{z})(\bar{x}+y+\bar{z})(\bar{x}+y+z)$

$$
(\bar{x}+y+\bar{z})(x+y+\bar{z})(x+\bar{y}+\bar{z})(\bar{x}+y+\bar{z})(\bar{x}+\bar{y}+\bar{z}) z
$$

So, $F[x, y, z]$ can also be written as,
$F[x, y, z]=\pi M[1,3,4,5,7] \rightarrow$ POS format
$F[x, y, z]=\Sigma m[0,2,6] \rightarrow$ SOP format.
So k-map for SOP format is,

So, minimized function (F) is, $F[x, y, z]=\bar{x} \bar{z}+y \bar{z}$
Hence, the correct option is (D).
Method 2 :
Given : $F(x, y, z)=\left(x^{\prime}+y+z\right) \cdot\left(x+y^{\prime}+z^{\prime}\right) \cdot\left(x^{\prime}+y+z^{\prime}\right) \cdot\left(x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x y z^{\prime}\right)$
Assume, $\quad F_{1}[x, y, z]=[\bar{x}+y+z][x+\bar{y}+\bar{z}][\bar{x}+y+\bar{z}] \quad$ (POS format)

$$
\begin{equation*}
F_{2}[x, y, z]=[\bar{x} \bar{y} \bar{z}+\bar{x} y \bar{z}+x y \bar{z}] \tag{SOPformat}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
F[x, y, z]=F_{1}[x, y, z] \cdot F_{2}[x, y, z] \tag{i}
\end{equation*}
$$

Converting $F_{1}[x, y, z]$ in SOP format as,

$$
\begin{array}{ll}
F_{1}[x, y, z]=[\bar{x}+y+z][x+\bar{y}+\bar{z}][\bar{x}+y+\bar{z}] & \text { (POS format) } \\
F_{1}[x, y, z]=\pi m[100,011,101] & (\text { POS format }) \\
F_{1}[x, y, z]=\pi m[3,4,5] & \text { (POS format) } \\
F_{1}[x, y, z]=\sum m[0,1,2,6,7] & \text { (SOP format) }
\end{array}
$$

So, minimized form of $F_{1}[x, y, z]$, using K-map is,

Thus,

$$
\begin{equation*}
F_{1}[x, y, z]=[\bar{x} \bar{y}+x y+y \bar{z}] \tag{ii}
\end{equation*}
$$

Here,

$$
\begin{array}{ll}
F_{2}[x, y, z] & =[\bar{x} \bar{y} \bar{z}+\bar{x} y \bar{z}+x y \bar{z}] \\
F_{2}[x, y, z]=[\bar{x} \bar{z}(\bar{y}+z)+y \bar{z}(\bar{x}+x)] & {[\because y+\bar{y}=x+\bar{x}=1]} \\
F_{2}[x, y, z]=[\bar{x} \bar{z}+y \bar{z}]
\end{array}
$$

Put F_{1} and F_{2} in from equation (ii) and (iii) to equation (i) as,

$$
\left.\begin{array}{l}
F[x, y, z]=[\bar{x} \bar{y}+x y+y \bar{z}][\bar{x} \bar{z}+y \bar{z}] \\
F[x, y, z]=\bar{x} \overline{\bar{x}} \bar{y} \bar{z}+\bar{x} x y \bar{z}+\bar{x} y \bar{z} \bar{z}+\bar{x} \bar{y} y \bar{z}+x y y \bar{z}+y \bar{z} y \bar{z} \\
F[x, y, z]=\bar{x} \bar{y} \bar{z}+0+\bar{x} y \bar{z}+0+x y \bar{z}+y \bar{z} \\
F[x, y, z]=\bar{x} \bar{z}[\bar{y}+y]+y \bar{z}[x+1] \\
F[x, y, z]=\bar{x} \bar{z}+y \bar{z}
\end{array} \quad \quad \because \because \bar{y}+y=1 \text { and } 1+x=1\right]
$$

Hence, the correct option is (D).

Method 3 :

Given : $F(x, y, z)=\left(x^{\prime}+y+z\right) \cdot\left(x+y^{\prime}+z^{\prime}\right) \cdot\left(x^{\prime}+y+z^{\prime}\right) \cdot\left(x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x y z^{\prime}\right)$
After multiplication and simplification,

$$
\begin{array}{ll}
F[x, y, z]=\bar{x} \bar{y} \bar{z}+\bar{x} y \bar{z}+x y \bar{z} \\
F[x, y, z]=\bar{x} \bar{z}[\bar{y}+y]+y \bar{z}[\bar{x}+x] \\
F[x, y, z]=\bar{x} \bar{z}+y \bar{z} & {[\because \bar{y}+y=\bar{x}+x=1]}
\end{array}
$$

Hence, the correct option is (D).

For a 4-bit flash type Analog to Digital Convertor (ADC) with full scale input voltage range " V ", which of the following statement(s) is/are true?
[1 Mark]
(A) A change in input voltage by $\frac{V}{16}$ will always flip MSB of the output.
(B) A change in input-voltage by $\frac{V}{16}$ will always flip LSB of the output.
(C) The ADC requires one 4 to 2 priority encoder and 4 comparators.
(D) The ADC requires 15 comparators.

Ans. B, D
Sol. n-bit flash type ADC requires $2^{n}-1$ comparators.
So, 4-bit flash type ADC requires
$2^{4}-1=15$ comparators
So, option (D) is correct.
Also, a change in input voltage by $\frac{V}{2^{n}}$ will always flip LSB of the output of n-bit flash ADC.
So, a change in input voltage by $\frac{V}{16}$ will always flip LSB of the output of 4-bit flash ADC.

Input of ADC	Output of ADC			
	MSB			LSB
$0<V_{\text {in }}<\frac{V}{16}$	0	0	0	0
$\frac{V}{16}<V_{\text {in }}<\frac{2 V}{16}$	0	0	0	1
$\frac{2 V}{16}<V_{\text {in }}<\frac{3 V}{16}$	0	0	1	0
$\frac{3 V}{16}<V_{\text {in }}<\frac{4 V}{16}$	0	0	1	1
$\frac{4 V}{16}<V_{i n}<\frac{5 V}{16}$	0	1	0	0
$\frac{5 V}{16}<V_{i n}<\frac{6 V}{16}$	0	1	0	1
$\frac{6 V}{16}<V_{i n}<\frac{7 V}{16}$	0	1	1	0
$\frac{7 V}{16}<V_{i n}<\frac{8 V}{16}$	0	1	1	1
$\frac{8 V}{16}<V_{i n}<\frac{9 V}{16}$	1	0	0	0

$\frac{9 V}{16}<V_{\text {in }}<\frac{10 V}{16}$	1	0	0	1
$\frac{10 V}{16}<V_{\text {in }}<\frac{11 V}{16}$	1	0	1	0
$\frac{11 V}{16}<V_{i n}<\frac{12 V}{16}$	1	0	1	1
$\frac{12 V}{16}<V_{\text {in }}<\frac{13 V}{16}$	1	1	0	0
$\frac{13 V}{16}<V_{\text {in }}<\frac{14 V}{16}$	1	1	0	1
$\frac{14 V}{16}<V_{\text {in }}<\frac{15 V}{16}$	1	1	1	0
$\frac{15 V}{16}<V_{\text {in }}<\frac{16 V}{16}$	1	1	1	1

From the above table it is clear that, LSB will always flip from 0 to 1 or 1 to 0 when input voltage in changed by $\frac{V}{16}$. Hence B is also correct option.

Question 10

Control System (MCQ)
Consider a unity feedback configuration with a plant and a PID controller as shown in the figure.

$$
G(s)=\frac{1}{(s+1)(s+3)} \text { and } C(s)=K \frac{(s+3-j)(s+3+j)}{s}
$$

with K being scalar. The closed loop is
[2 Marks]

(A) Only stable for $K>0$
(B) Only stable for K between -1 and +1
(C) Stable for all values of K
(D) Only stable for $K<0$

Ans. A
Sol. Given : $G(s)=\frac{1}{(s+1)(s+3)}$
For PID controller,

$$
\begin{aligned}
& C(s)=\frac{K(s+3-j)(s+3+j)}{s} \\
& C(s)=K\left[\frac{(s+3)^{2}+1}{s}\right] \\
& C(s)=K\left[\frac{s^{2}+6 s+10}{s}\right]=K\left[6+\frac{10}{s}+s\right]
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& G^{\prime}(s)=G(s) C(s) \\
& G^{\prime}(s)=\left[\frac{1}{(s+1)(s+3)}\right]\left[K\left(6+\frac{10}{s}+s\right)\right] \\
& G^{\prime}(s)=K\left[\frac{s^{2}+6 s+10}{s^{3}+4 s^{2}+3 s}\right]
\end{aligned}
$$

So characteristic equation is,

$$
\begin{aligned}
& 1+G^{\prime}(s)=0 \\
& s^{3}+(4+K) s^{2}+(6 K+3) s+10 K=0
\end{aligned}
$$

Apply Routh-Hurwitz criteria,

s^{3}	1	$6 K+3$
s^{2}	$4+K$	$10 K$
s^{1}	$\frac{6 K^{2}+27 K+12-10 K}{4+K}$	0
s^{0}	$10 K$	0

For stability, $10 K>0$

$$
K>0
$$

It shows K is positive always.
So, for any positive value of K, system is stable.
Hence, the correct option is (A).

Shortcut method :

Internal product $(I P)=(4+K)(6 K+3)$
External product $(E P)=10 K$
So, $I P>E P$

$$
K>0 \quad \text { (Stable system) }
$$

Hence, the correct option is (A).

Question 11

Digital Electronics (MCQ)

A $10 \frac{1}{2}$ digital Counter-timer is set in the "frequency mode" of operation (with $T_{s}=1 \mathrm{~s}$). For a specific input, the rating obtained is 1000 . Without disconnecting this input, the Counter-timer is changed to operate in the "Period mode" and the range selected is microseconds ($\mu \mathrm{s}$, with $f_{s}=1 \mathrm{MHz}$). The counter will then display
[2 Marks]
(A) 1000
(B) 100
(C) 0
(D) 10

Ans. A

Sol. Method 1 :
Case 1 : Frequency mode of operation,

$$
f_{\text {signal }}=1000 \mathrm{~Hz}
$$

Case 2: Time period mode of operation,

Reading $=\frac{1 \mathrm{msec}}{1 \mu \mathrm{sec}}=1000$
Hence, the correct option is (A).
Method 2 :
In frequency mode,
$T_{s}=$ Gating internal $=1 \mathrm{sec}$
Reading $=1000$
Reading of counter $=$ Gating interval \times Frequency

$$
1000=1 \times f
$$

$\therefore \quad \quad f=1000 \mathrm{~Hz}$
In period mode,
Frequency of pulse passing through gate $=f_{s}=1 \mathrm{MHz}$
Gating interval $=\frac{1}{f}=\frac{1}{1000}=1 \mathrm{~m} \mathrm{sec}$
Reading $=$ Gating interval \times Frequency of pulse
Reading $=10^{-3} \times 10^{6}=1000$
Hence, the correct option is (A).

Question 12

The transistor Q_{1} has a current gain $\beta_{1}=99$ and the transistor Q_{2} has a current gain $\beta_{2}=49$. The current $I_{B_{2}}$ in microampere is \qquad .
[1 Mark]

Ans. 10
Sol. Given circuit is shown below,

For BJT $Q_{1}, \quad I_{E_{1}}=\left(1+\beta_{1}\right) I_{B_{1}}$

$$
\begin{aligned}
& I_{B_{1}}=\frac{I_{E_{1}}}{\left(1+\beta_{1}\right)} \\
& I_{B_{1}}=\frac{50}{1+99} \mathrm{~mA}=0.5 \mathrm{~mA}
\end{aligned}
$$

From above figure it is clear that,

$$
\therefore \quad I_{E_{2}}=I_{B_{1}}=0.5 \mathrm{~mA}
$$

For BJT $Q_{2}, \quad I_{E_{2}}=\left(1+\beta_{2}\right) I_{B_{2}}$

$$
\begin{aligned}
& I_{B_{2}}=\frac{I_{E_{2}}}{\left(1+\beta_{2}\right)} \\
& I_{B_{2}}=\frac{0.5}{(1+49)} \mathrm{mA}=\frac{0.5}{50} \mathrm{~mA} \\
& I_{B_{2}}=10 \mu \mathrm{~A}
\end{aligned}
$$

Question 13

For the full bridge made of linear strain gages with gage factor 2 as shown in the diagram $R_{1}=R_{2}=R_{3}=R_{4}=100 \Omega$ at $0^{\circ} \mathrm{C}$ and strain is 0 . The temperature coefficient of resistance of the strain gages used is $0.005 \operatorname{per}^{0} \mathrm{C}$. All strain gages are made of same material and exposed to same temperature. While measuring a strain of 0.01 at a temperature of $50^{\circ} \mathrm{C}$, the output V_{0} in millivolt is \qquad (rounded off to two decimal places).

Ans. 2.5
Sol. At $T=0^{0} \mathrm{C} \Rightarrow R_{1}=R_{2}=R_{3}=R_{4}=100 \Omega=R$
At $T=50^{\circ} \mathrm{C} \Rightarrow R_{50}=(1+\alpha \Delta T) R$

$$
\begin{array}{ll}
\Rightarrow & R_{50}=(1+0.005 \times 50) 100 \\
\Rightarrow & R_{50}=(1.25)_{50}=125 \Omega
\end{array}
$$

So effective nominal resistance due to temperature change $=125 \Omega$
Now, assume tensile and compressive strength on arms R_{2}, R_{3} and R_{1}, R_{4} respectively
$\therefore \Delta R$ due to ε

$$
\begin{array}{ll}
\Rightarrow & 125 \times 2 \times 0.01=2.5 \Omega \\
\therefore & R_{2} \text { and } R_{3} \Rightarrow 125+2.5=127.5 \Omega \\
\therefore & R_{1} \text { and } R_{4}=\Rightarrow 125-2.5=122.5 \Omega \\
\therefore & V_{\text {output }}=\frac{1}{2} \times(127.5-122.5) \\
& V_{\text {output }}=2.5 \mathrm{mV}
\end{array}
$$

Question 14
Let $f(z)=\frac{1}{z^{2}+6 z+9}$ defined in complex plane. This integral $\oint_{C} f(z) d z$ over the contour of a circle c with center at the origin and unit radius is \qquad .
[1 Mark]
Ans. 0

Sol. Given : $f(z)=\frac{1}{z^{2}+6 z+9}=\frac{1}{(z+3)^{2}}$
$f(z)$ has pole at $z=-3$ of order 2 .
Given we have a unity radius circle with center at origin.

Since, no pole lie inside or on the contour.
Therefore, $\oint_{C} f(z) d z=0$

Question 15

The determinant of the matrix M shown below is \qquad .

$$
M=\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
3 & 4 & 0 & 0 \\
0 & 0 & 4 & 3 \\
0 & 0 & 2 & 1
\end{array}\right]
$$

Ans. 4
Sol. Given : $\quad M=\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & 4 & 3 \\ 0 & 0 & 2 & 1\end{array}\right]$
Now, $R_{2} \rightarrow R_{2}-3 R_{1}$
$\therefore \quad M=\left[\begin{array}{cccc}1 & 2 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 4 & 3 \\ 0 & 0 & 2 & 1\end{array}\right]$
Determinant of matrix, $|M|=1\left|\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 4 & 3 \\ 0 & 2 & 1\end{array}\right|$

$$
\begin{aligned}
& |M|=-2\left|\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right| \\
& |M|=1[-2(4-6)-0+0]
\end{aligned}
$$

$$
|M|=4
$$

Question 16

Engg. Mathematics (NAT)

Given $A=\left[\begin{array}{ll}2 & 5 \\ 0 & 3\end{array}\right]$. The value of the determinant $\left|A^{4}-5 A^{3}+6 A^{2}+2 I\right|=$ \qquad .
[2 Marks]
Ans. 4
Sol. Given : $A=\left[\begin{array}{ll}2 & 5 \\ 0 & 3\end{array}\right]$
Using Cayley Hamilton theorem,

$$
\begin{aligned}
& |A-\lambda I|=0 \\
& \left|\begin{array}{cc}
2-\lambda & 5 \\
0 & 3-\lambda
\end{array}\right|=0 \\
& \lambda^{2}-5 \lambda+6=0
\end{aligned}
$$

Replacing λ by A,

$$
\begin{equation*}
A^{2}-5 A+6 I=0 \tag{i}
\end{equation*}
$$

\quad Now, $\quad A^{4}-5 A^{3}+6 A^{2}+2 I=A^{2}\left(A^{2}-5 A+6\right)+2 I$

$$
A^{4}-5 A^{3}+6 A^{2}+2 I=A^{2} \times 0+2 I=2 I
$$

\quad Now, $\quad\left|A^{4}-5 A^{3}+6 A^{2}+2 I\right|=\left|2 I_{2 \times 2}\right|=4$
Hence, the correct answer is 4 .

Question 17

Sensor \& Industrial Instrumentation (NAT)
A strain gage having nominal resistance of 1000Ω has a gage factor of 2.5 . If the strain applied to the gage is $100 \mu \mathrm{~m} / \mathrm{m}$, its resistance in ohm will change to \qquad (rounded off to two decimal places).

Ans. 1000.25
Sol. Given : $R=1000 \Omega$, Gauge factor $(G . F)=2.5$
Strain $=100 \mu \mathrm{~m} / \mathrm{m}$
According to question we have to calculate the value of $R+\Delta R$.

Here,

$$
\begin{aligned}
& \text { G.F }=\frac{\frac{\Delta R}{R}}{\varepsilon} \\
& G . F \varepsilon R=\Delta R \\
& 2.5 \times 100 \times 10^{-6} \times 1000=\Delta R \\
& \Delta R=0.25 \Omega
\end{aligned}
$$

\therefore Resistance will change to $R+\Delta R=1000+0.25=1000.25 \Omega$

Given : Density of mercury is $13600 \mathrm{~kg} / \mathrm{m}^{3}$ and acceleration due to gravity is $9.81 \mathrm{~m} / \mathrm{s}^{2}$. Atmosphere pressure is 101 kPa . In a mercury U-tube manometer, the difference between heights of the liquid in U tube is 1 cm . The differential pressure being measured in pascal is \qquad (rounded off to the nearest integer).
[1 Mark]
Ans. 1334.16
Sol. Given : $\rho_{m}=13600 \mathrm{~kg} / \mathrm{m}^{3}$
$g=9.81 \mathrm{~m} / \mathrm{s}^{2}$
$P_{\text {ATM }}=101 \mathrm{kPa}$
$h_{m}=1 \mathrm{~cm}$

Differential pressure,

$$
\begin{aligned}
& \Delta P=P_{1}-P_{\text {ATM }} \\
& \Delta P=\rho_{m} g h_{m} \\
& \Delta P=13600 \times 9.81 \times 10^{-2} \\
& \Delta P=133416 \times 10^{-2} \mathrm{~Pa} \\
& \Delta P=1334.16 \mathrm{~Pa}
\end{aligned}
$$

Question 19

(A) $\frac{1}{(z-1)^{2}}$ for $|z-1|<1$
(B) $\frac{1}{z(z-1)}$ for $|z-1|<1$
(C) $\frac{-1}{z(z-1)}$ for $|z-1|<1$
(D) $\frac{-1}{(z-1)}$ for $|z-1|<1$

Ans. B
Sol. Given :

$$
\begin{aligned}
& f(z)=(z-1)^{-1}-1+(z-1)-(z-1)^{2}+\ldots . . \\
& f(z)=(z-1)^{-1}\left[1-\frac{1}{(z-1)^{-1}}+\frac{(z-1)}{(z-1)^{-1}}-\frac{(z-1)^{2}}{(z-1)^{-1}}+\ldots \ldots\right] \\
& f(z)=(z-1)^{-1}\left[1-(z-1)+(z-1)^{2}-(z-1)^{3}+\ldots \ldots .\right]
\end{aligned}
$$

Now, $\quad(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots$; for $|x|<1$
$\therefore \quad f(z)=\frac{1}{(z-1)}[1+(z-1)]^{-1}$, for $|z-1|<1$
$\Rightarrow \quad f(z)=\frac{1}{(z-1)}\left[z^{-1}\right]$, for $|z-1|<1$

$$
\Rightarrow \quad f(z)=\frac{1}{z(z-1)}, \text { for }|z-1|<1
$$

Hence, the correct option is (B).

Question 20

Digital Electronics (NAT)

A 10-bit ADC has a full-scale of 10.230 V , when the digital output is $(1111111111)_{2}$. The quantization error of the ADC in millivolt is \qquad .
Ans. 5
Sol. Full scale voltage $\left(V_{f s}\right)=10.23 \mathrm{~V}$
Number of bits $(n)=10$
Number of steps $=2^{10}-1=1023$
We know that,
Full scale voltage $=$ Resolution \times Number of steps

$$
10.23 \mathrm{~V}=\text { Resolution } \times 1023
$$

$$
\text { Resolution }=\frac{10.23}{1023}=\frac{1}{100}=10 \mathrm{mV}
$$

Maximum quantization error of $A D C$ is given as,

$$
=\frac{\text { Resolution }}{2}=\frac{10 \mathrm{mV}}{2}=5 \mathrm{mV}
$$

Question 21
In an ac main, the rms voltage $V_{a c}$, rms current $I_{a c}$ and power $W_{a c}$ are measured as, $V_{a c}=100 \mathrm{~V} \pm 1 \%$, $I_{a c}=1 \mathrm{~A} \pm 1 \%$ and $W_{a c}=50 \mathrm{~W} \pm 2 \%$ (errors are with respect to readings). The percentage error in calculating the power factor measured using these readings is
(A) 1%
(B) 4%
(C) 3%
(D) 2%

Ans. B
Sol. Given : $V_{a c}=100 \mathrm{~V} \pm 1 \%$
$I_{r m s}=1 \mathrm{~A} \pm 1 \%$
$W_{a c}=50 \mathrm{~W} \pm 2 \%$
Now, we know that
Power factor $=\frac{\text { True power }}{\text { Apparent power }}$
and

$$
W=V I \cos \phi
$$

or $\quad \cos \phi=\frac{W}{V I}$

$$
\begin{aligned}
& \% \varepsilon_{P F}= \pm\left[\left(\% \varepsilon_{W}\right)+\left(\% \varepsilon_{V}\right)+\left(\% \varepsilon_{I}\right)\right] \\
& \% \varepsilon_{P F}=(\pm 2 \%)+(\pm 1 \%)+(\pm 1 \%)= \pm 4 \%
\end{aligned}
$$

Hence, the correct option is (B).

Question 22

When the movable arm of a Michelson interferometer in vacuum $(n=1)$ is moved by $325 \mu \mathrm{~m}$, the number of fringe crossings is 1000 . The wavelength of the laser used in nanometers is \qquad . [1 Mark]
Ans. 650
Sol. Given : Number of fringe crossing $(n)=100$

$$
\begin{array}{ll}
\eta_{c}=1 \rightarrow & \text { For vacuum } \\
x=325 \mu \mathrm{~m} \tag{i}
\end{array}
$$

Thus, path difference of moveable are $=2 x$
Actual part difference due to fringe crossing $=n \lambda$
Equating equation (i) and (ii),

$$
\begin{aligned}
& 2 x=n \lambda \\
& 2 \times x=(1000) \lambda \\
& 2 \times 325 \mu \mathrm{~m}=1000 \lambda \\
& 650 \mu \mathrm{~m}=1000 \lambda \\
& 650 \mathrm{~nm}=\lambda
\end{aligned}
$$

Question 23

Control System (NAT)

A sinusoidal $(\sqrt{2} \sin t) \mu(t)$, where $\mu(t)$ is the step input, is applied to a system with transfer-function $G(s)=\frac{1}{s+1}$. The amplitude of the steady state output is \qquad .
Ans. 1
Sol. Given : $G(s)=\frac{1}{s+1}$
input $r(t)=A \sin \omega t=\sqrt{2} \sin t$

Thus output is $c(t)=\sqrt{2}|G(j \omega)| \sin (t+\phi)$
Where

$$
\begin{equation*}
\phi=\angle G(j \omega) \tag{i}
\end{equation*}
$$

From input $r(t)=\sqrt{2} \sin t$, it is clear that $\omega=\omega_{0}=1 \mathrm{rad} / \mathrm{sec}$.
Here, $\quad G(s)=\frac{1}{s+1}$
Put $s=j \omega, \quad G(j \omega)=\frac{1}{j \omega+1}$

$$
\left.G(j \omega)\right|_{\omega=\omega_{0}=1}=\frac{1}{j+1}
$$

$$
\begin{aligned}
& |G(j \omega)|_{\omega=\omega_{0}=1}=\frac{1}{\sqrt{1^{2}+1^{2}}}=\frac{1}{\sqrt{2}} \\
& \left.\angle G(j \omega)\right|_{\omega=\omega_{0}=1}=\tan ^{-1}\left(\frac{1}{1}\right)=45^{0}
\end{aligned}
$$

So, final output $c(t)$ under steady state at $\omega=\omega_{0}=1 \mathrm{rad} / \mathrm{sec}$ is (from equation (i))

$$
c(t)=1 \sin \left(t+45^{0}\right)
$$

Thus, amplitude of $c(t)$ under steady state at $\omega=\omega_{0}=1 \mathrm{rad} / \mathrm{sec}$ is 1 .

Question 24

Communication System (NAT)

Consider that x and y are independent continuous valued random variables with uniform PDF given by $x \sim U(2,3)$ and $y \sim U(1,4)$. Then $P(Y \leq X)$ is equal to \qquad (rounded off to two decimal places).

Ans. 0.5
Sol. Given pdf of random variable x and y is

$$
\begin{aligned}
& \text { fres }(x) \\
& P[x<X<x+d x, y<Y<y+d y]=f_{X Y}(x, y) d x d y \\
& P[2<X<3,1<Y<x]=\int_{2}^{3} \int_{1}^{x} f_{X Y}(x, y) d x d y \\
& P[Y \leq x]=\int_{2}^{3} \int_{1}^{x} f_{X}(x) f_{Y}(y) d x d y \\
& P[Y \leq x]=\frac{1}{3} \times 1 \int_{2}^{3} \int_{1}^{x} d y \cdot d x \\
& P[Y \leq x]=\frac{1}{3} \int_{2}^{3}[y]_{1}^{x} d x \\
& P[Y \leq x]=\frac{1}{3} \int_{2}^{3}(x-1) d x \\
& P[Y \leq x]=\frac{1}{3}\left[\frac{x^{2}}{2}-x\right]_{2}^{3} \\
& P[Y \leq x]=\frac{1}{3}[(4.5-3)-(2-2)] \\
& P[Y \leq x]=\frac{1}{3} \times 1.5=0.5
\end{aligned}
$$

Question 25

An amplitude modulation (AM) scheme uses tone modulation, with modulation index of 0.6 . The power efficiency of the AM scheme is \qquad \% (rounded off to one decimal place)
[1 Mark]
Ans. 15.25
Sol. Given : $\mu_{a}=0.6$
So efficiency of amplitude modulation is,

$$
\begin{aligned}
& \% \eta=\frac{\mu_{a}^{2}}{2+\mu_{a}^{2}} \times 100 \% \\
& \% \eta=\frac{(0.6)^{2}}{2+(0.6)^{2}} \times 100 \%=15.25 \%
\end{aligned}
$$

Question 26

Communication System (NAT)

A signal having a bandwidth of 5 MHz is transmitted using the Pulse code modulation (PCM) scheme as follows. The signal is sampled at a rate 50% above the Nyquist rate and quantized into 256 levels. The binary pulse rate of the PCM signal in Mbits per second is \qquad .
[2 Marks]
Ans. 120
Sol. Given : $B W=f_{m}=5 \mathrm{MHz}$
Nyquist rate (N.R) $=2 \times B W=2 f_{m}=2 \times 5=10 \mathrm{MHz}$
Sampling frequency, $f_{s}=1.5 \times N . R$

$$
f_{s}=1.5 \times 10=15 \mathrm{MHz}
$$

Given, $L=256=2^{n} \quad \rightarrow \quad$ Numbers of levels

$$
n=8 \text { bit } \quad \rightarrow \quad \text { it should be integer always }
$$

Bit rate of PCM, $R_{b}=n f_{s}=8 \times 15$

$$
R_{b}=120 \mathrm{Mbps}
$$

Question 27

The input signal shown below

is passed through the filter with the following taps

The number of non-zero output samples is \qquad .

Ans. 10

Sol. Given :

$$
\begin{aligned}
& x[n]=\{1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,1,1,1,1\} \\
& h[n]=\{-1,2,-1\}
\end{aligned}
$$

Output of filter $y[n]$ is given as

$$
\begin{align*}
y[n] & =x[n]^{*} h[n] \\
& =x[n]^{*}[-\delta[n+1]+2 \delta[n]-\delta[n-1]] \\
y[n] & =-x[n+1]+2 x[n]-x[n-1] \tag{i}
\end{align*}
$$

Origin for input is not mentioned in the question but as we just have to find number of non-zero samples of $y[n]$, so we can take origin at any sample.

Taxing origin at the left most sample and finding terms of R.H.S. of equation (i),

$$
\begin{aligned}
& x[n]=\{1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,1,1,1,1\} \\
& -x[n+1]=\left\{-1,-\frac{1}{\uparrow},-1,-1,-1,-1,-1,-1,-2,-2,-2,-2,-3,-3,-3,-3,-1,-1,-1,-1,0\right\} \\
& 2 x[n]=\{0,2,2,2,2,2,2,2,2,4,4,4,4,6,6,6,6,2,2,2,2\} \\
& -x[n-1]=\{0,0,-1,-1,-1,-1,-1,-1,-1,-1,-2,-2,-2,-2,-3,-3,-3,-3,-1,-1,-1,-1\} \\
& y[n]=\left\{-1, \frac{1}{\uparrow}, 0,0,0,0,0,0,-1,-1,0,0,-1,-1,0,0,2,-2,0,0,1,-1\right\}
\end{aligned}
$$

Hence, the number of non-zero samples in output $y[n]$ is 10 .

Question 28

Signals \& Systems (MCQ)
The input-output relationship of an LTI system is given below

For an input $x[n]$ shown below,

the peak value of the output when $x[n]$ is passed through h is \qquad .
[1 Mark]
(A) 4
(B) 5
(C) 2
(D) 6

Ans. B
Sol. Given input-output relation and input x [n] are shown in figure

Figure-I

Figure-II
From figure-I, as the input applied is $\delta[n]$ i.e. impulse function, so its response is nothing but the impulse response of the given LTI system

$$
\therefore \quad \mathrm{h}[\mathrm{n}]=\delta[\mathrm{n}]+2 \delta[\mathrm{n}-1]+\delta[\mathrm{n}-2]
$$

From figure-II,

$$
\mathrm{X}[\mathrm{n}]=\delta[\mathrm{n}]+2 \delta[\mathrm{n}-1]
$$

Response of the system for input $\mathrm{x}[\mathrm{n}]$ is given as

$$
\begin{aligned}
& \\
& y[n]=x[n] * h[n] \\
&=\{\delta[n]+2 \delta[n-1]\} *\{\delta[n]+2 \delta[n-1]+s[n-2]\} \\
& \because \quad \mathrm{x}[\mathrm{n}] \\
& y[n] * \delta[n]=x[0] \\
& y[n]=\delta[n]+2 \delta[n-1]+\delta[n-2]+2 \delta[n-1]+4 \delta[n-2]+2 \delta[n-3] \\
& y[n]=\delta[n]+4 \delta[n-1]+5 \delta[n-2]+2 \delta[n-1]
\end{aligned}
$$

Output $\mathrm{y}[\mathrm{n}]$ is plotted as shown in figure.

Hence, the peak value of $y[n]$ is $5 \&$ the correct options (B)
Hence, the correct option is (B).

Question 29

Signals \& Systems (MCQ)
Consider the sequence $x_{n}=0.5 x_{n-1}+1, n=1,2, \ldots \ldots$ with $x_{0}=0$. Then $\lim _{n \rightarrow \infty} x_{n}$ is
[1 Mark]
(A) ∞
(B) 0
(C) 2
(D) 1

Ans. C
Sol. Given : $\mathrm{x}_{\mathrm{n}}=0.5 \mathrm{x}_{\mathrm{n}-1}+1, \mathrm{n}=1,2,3 \ldots$.
\& $\mathrm{x}_{0}=0$

Method 1 :

For limit, $\quad(\mathrm{n}-1) \rightarrow \infty$
So,
$\mathrm{n} \rightarrow \infty$
$\therefore \quad \lim _{\mathrm{x} \rightarrow \infty} \mathrm{X}_{\mathrm{n}}=\lim _{\mathrm{x} \rightarrow \infty} 0.5 \mathrm{x}_{\mathrm{n}-1}+1$
$\mathrm{x}_{\infty}=0.5 \quad \mathrm{x}_{\infty}+1$

$$
=0.5 \mathrm{x}_{\infty}=1
$$

$\therefore \quad \mathrm{x}_{\infty}=\frac{1}{0.5}=2$
Hence, the correct option is (C)

Method 2 :

Given $\mathrm{x}_{\mathrm{n}}=0.5 \mathrm{x}_{\mathrm{n}-1}+1$

$$
\begin{aligned}
& x_{1}=0.5 x_{0}+1=1 \\
& x_{2}=0.5 x_{1}+1=1.5 \\
& x_{3}=0.5 x_{2}+1=1.75 \\
& x_{4}=0.5 x_{3}+1=1.875 \\
& x_{5}=0.5 x_{4}+1=1.9375 \\
& x_{6}=0.5 x_{5}+1=1.96875 \\
& x_{7}=0.5 x_{6}+1=1.984375 \\
& x_{8}=0.5 x_{7}+1=1.9921875 \\
& x_{9}=0.5 x_{8}+1=1.99609375 \approx 2 \\
& x_{10}=0.5 x_{9}+1=2 \\
& x_{11}=0.5 x_{10}+1=2
\end{aligned}
$$

If we continue the procedure further, then all of the next samples of x_{n} will have value equal to 2 . So the steady state value of x_{n} is 2 .
i.e. $\quad \lim _{x \rightarrow \infty} \mathrm{X}_{\mathrm{n}}=2$

Hence, the correct option in (C).

Question 30

Signals \& Systems (MCQ)
The signal $\sin (\sqrt{2 \pi t})$ is
[1 Mark]
(A) Periodic with period $T=4 \pi^{2}$
(B) Periodic with period $T=\sqrt{2} \pi$
(C) Not periodic
(D) Periodic with period $T=2 \pi$

Ans. C
Sol. Given : $x(t)=\sin \sqrt{2 \pi t}$
For a non DC signal to be periodic, there must exist a constant ' T ', such that,

$$
\begin{equation*}
x(t \pm T)=x(t) \tag{i}
\end{equation*}
$$

Equation (i), can be satisfied only if the power of ' t ' in $x(t)$ is 1 .
As here the power of ' t ' in $x(t)$ is $\frac{1}{2}$.
So, the signal is not periodic.
Hence, the correct option is (C).
Question 31
Signals \& Systems (NAT)
Given $y(t)=e^{-3 t} u(t)^{*} u(t+3)$, where * denotes convolution operation. The value of $y(t)$ as $t \rightarrow \infty$ is
\qquad (rounded off to two decimal places).
[2 Marks]
Ans. 0.33
Sol. Given : $y(t)=e^{-3 t} u(t) * u(t+3)$
Let $e^{-3 t} u(t)=x(t)$ and $u(t+3)=h(t)$
Then, $y(t)=x(t) * h(t)$

$$
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

As $x(t)=e^{-3 t} u(t), \quad h(t)=u(t+3)$
$x(\tau)=e^{-3 \tau} u(\tau), \quad h(t-\tau)=u(t-\tau+3)=u(-\tau+t+3)$
$\therefore \quad y(t)=\int_{-\infty}^{\infty} e^{-3 \tau} u(-\tau+t+3) d \tau$
$y(t)=\int_{-\infty}^{t+3} e^{-3 \tau} u(\tau) d \tau \quad[$ As $u(-\tau+t+3)$ is 1 only for $-\infty<\tau<t+3]$

$$
\begin{aligned}
\Rightarrow \quad & y(t)=\int_{0}^{t+3} e^{-3 \tau} d \tau=\left[\frac{e^{-3 \tau}}{-3}\right]_{0}^{t+3} \\
& y(t)=\frac{1}{3}\left[1-e^{-3(t+3)}\right] \\
& \lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty} \frac{1}{3}\left[1-e^{-3(t+3)}\right] \\
& \lim _{t \rightarrow \infty} y(t)=\frac{1}{3}\left[1-e^{-\infty}\right]=\frac{1}{3}[1-0]=\frac{1}{3}=0.33
\end{aligned}
$$

Question 32
Signals \& Systems (MCQ)
Let $u(t)$ denote the unit step function. The bilateral Laplace transform of the function $f(t)=e^{t} u(-t)$ is
[1 Mark]
(A) $\frac{1}{s-1}$ with real part of $s>1$
(B) $\frac{1}{s-1}$ with real part of $s<1$
(C) $\frac{-1}{s-1}$ with real part of $s>1$
(D) $\frac{-1}{s-1}$ with real part of $s<1$

Ans. D
Sol. Method 1 :

$$
\begin{array}{ll}
u(t) \stackrel{\text { L.T }}{\longleftrightarrow} \frac{1}{s}, \operatorname{Re}\{s\}>0 & \\
u(-t) \stackrel{\text { L.T }}{\longleftrightarrow} \frac{-1}{s}, \operatorname{Re}\{s\}<0 & \text { [Using time reversal property] } \\
e^{t} u(-t) \stackrel{\text { L.T }}{\longleftrightarrow} \frac{-1}{s-1}, \operatorname{Re}\{s\}<1 & \text { [Using frequency shifting property] }
\end{array}
$$

Hence, the correct option is (D).
Method 2 :

$$
\begin{aligned}
& f(t)=e^{t} u(-t) \\
& F(s)=\int_{-\infty}^{\infty} f(t) e^{-s t} d t \\
& F(s)=\int_{-\infty}^{\infty} e^{t} u(-t) e^{-s t} d t=\int_{-\infty}^{0} e^{t} e^{-s t} d t \\
& F(s)=\int_{-\infty}^{0} e^{(1-s) t} d t=\left[\frac{e^{(1-s) t}}{(1-s)}\right]_{-\infty}^{0}=\frac{1-0}{1-s} \\
& F(s)=\frac{-1}{s-1}
\end{aligned}
$$

As $f(t)$ is left sided, hence, ROC of rational Laplace transform will be left to the left most pole.
$\therefore \quad F(s)=\frac{-1}{s-1}, \operatorname{Re}\{s\}<1$
Hence, the correct option is (D).
Question 33
Control System (NAT)
Taking N as positive for clockwise encirclement, otherwise negative, the number of encirclements N of $(-1,0)$ in the Nyquist plot of $G(s)=\frac{3}{s-1}$ is \qquad .
[1 Mark]
Ans. -1
Sol. Given : $G(s)=\frac{3}{s-1}$
Magnitude, $\quad|G(j \omega)|=\frac{3}{\sqrt{\omega^{2}+1}}$
Phase angle, $\quad \angle G(j \omega)=-180^{\circ}+\tan ^{-1}\left(\frac{\omega}{1}\right)$
Magnitude and phase table is given by,

$\boldsymbol{\omega}$	Magnitude $\|\boldsymbol{G}(\boldsymbol{j} \omega)\|$	Phase angle $\angle \boldsymbol{G}(\boldsymbol{j} \boldsymbol{\omega})$
0	3	-180°
∞	0	-90°

Nyquist plot for $G(s)$ is shown below,

Since, N is the positive for clockwise encirclement and negative for anticlockwise encirclement.
Here, encirclement of critical point $(-1+j 0)$ is in anticlockwise direction.
So that,

$$
N=-1
$$

Question 34

The output V_{0} of the ideal OpAmp used in circuit shown below is 5 V . Then the value of resistor R_{L} in kilo ohm $(k \Omega)$ is

(A) 2.5
(B) 25
(C) 5
(D) 50

Ans. B
Sol. Given circuit is shown below,

Given that the Op-Amp is ideal, therefore virtual ground conditions will hold true.
Let the potential at R_{L} is V_{A}
Now, by voltage divider rule,

$$
\begin{equation*}
V_{A}=V_{0} \times \frac{R_{L}}{R_{L}+10} \tag{i}
\end{equation*}
$$

By virtual ground concept V_{A} will also appear at the inverting terminal.

Thus, KCL at point N,

$$
\begin{equation*}
\frac{V_{A}-0}{10}+\frac{V_{A}-V_{0}}{10}=0 \tag{ii}
\end{equation*}
$$

$$
\begin{array}{ll}
& \frac{V_{A}}{10}=\frac{5-V_{A}}{10} \\
\therefore \quad & 2 V_{A}=5 \mathrm{~V} \\
& V_{A}=2.5 \mathrm{~V}
\end{array}
$$

Now, apply KCL at point P,

$$
\begin{aligned}
& \frac{V_{A}-1}{10}+\frac{V_{A}}{R_{L}}+\frac{V_{A}-V_{0}}{10}=0 \\
& \frac{1.5}{10}-\frac{2.5}{10}=-\frac{2.5}{R_{L}}
\end{aligned}
$$

As $V_{0}=5 \mathrm{~V}$ and $V_{A}=2.5 \mathrm{~V}$

$$
\begin{array}{ll}
& \frac{-1.0}{10}=\frac{-2.5}{R_{L}} \\
\therefore & R_{L}=25 \mathrm{k} \Omega
\end{array}
$$

Hence, the correct option is (B).
Question 35
A single-phase transformer has a magnetizing inductance of 250 mH and a core loss resistance of 300Ω referred to primary side. When excited with a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ sinusoidal supply at the primary, the power factor of the input current drawn with secondary on open circuit, is \qquad (rounded off to two decimal places)
[1 Mark]
Ans. 0.253
Sol. Method 1 :
As we know from equivalent circuit of transformer under no load condition,

$$
\vec{I}_{1}=\vec{I}_{0}+\vec{I}_{1}^{\prime}
$$

Under no load condition, $\vec{I}_{1}^{\prime}=0 \mathrm{~A}$

So,

$$
\vec{I}_{1}=\vec{I}_{0}
$$

Applying nodal analysis at node A,

$$
\begin{aligned}
& \frac{V}{j X_{m}}+\frac{V}{R_{C}}-I_{0}=0 \\
& I_{0}=\frac{V}{j X_{m}}+\frac{V}{R_{C}} \\
& \bar{I}_{0}=\frac{230 \angle 0^{0}}{j 2 \pi \times 50 \times 250 \times 10^{-3}}+\frac{230 \angle 0^{0}}{300} \\
& \bar{I}_{0}=-j 0.2929+0.766 \\
& \bar{I}_{0}=0.766-j 0.2929 \\
& \bar{I}_{0}=3.02 \angle-75.34^{0} \mathrm{~A} \\
& \cos \phi=\cos \left(-75.34^{0}\right)=0.253 \mathrm{lag}
\end{aligned}
$$

Method 2 :

Equivalent circuit under noload condition is given by,

$$
\begin{aligned}
& \bar{I}_{0}=I_{\mu}-j I_{W} \\
& \angle I_{0}=\angle-\tan ^{-1}\left(\frac{I_{W}}{I_{\mu}}\right) \\
& \cos \left(\angle I_{0}\right)=\cos \left[-\tan ^{-1}\left(\frac{I_{W}}{I_{\mu}}\right)\right]
\end{aligned}
$$

Where

$$
\begin{aligned}
& I_{W}=\frac{X}{j X_{m}}, I_{\mu}=\frac{V}{R_{C}} \\
& \cos \left(\angle I_{0}\right)=\cos \left[-\tan ^{-1}\left(\frac{R_{C}}{X_{m}}\right)\right] \\
& \cos \left(\angle I_{0}\right)=\cos \left[-\tan ^{-1}\left(\frac{300}{2 \pi \times 50 \times 250 \times 10^{-3}}\right)\right] \\
& \cos \left(\angle I_{0}\right)=0.253 \mathrm{lag}
\end{aligned}
$$

From $\triangle \mathrm{OAB}$,

$$
\begin{aligned}
& \tan \theta_{0}=\frac{I_{0} X_{m}}{I_{0} R_{C}}=\frac{\left|X_{m}\right|}{R_{C}}=\frac{|2 \pi f L|}{R_{C}} \\
& \tan \theta_{0}=\frac{2 \pi \times 50 \times 250 \times 10^{-3}}{300}
\end{aligned}
$$

$\therefore \quad$ No load power factor, $\cos \theta_{0}=\cos \left(\tan ^{-1} \theta_{0}\right)$

$$
\begin{aligned}
& \cos \theta_{0}=\left[\tan ^{-1}\left(\frac{2 \pi \times 50 \times 250 \times 10^{-3}}{300}\right)\right] \\
& \cos \theta_{0}=0.253 \mathrm{lag}
\end{aligned}
$$

Question 36
A toroid made of CRGO has an inner diameter of 10 cm and an outer diameter of 14 cm . The thickness of the toroid is 2 cm .200 turns of copper wire is wound on the core, $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$ and μ_{R} of CRGO is 3000 . When a current of 5 mA flows though the winding, the flux density in the core in millitesla is
\qquad .
[2 Marks]
Ans. 10
Sol. As per the given information is question,
Toroid mode of

Let $r_{1} \rightarrow$ radius of inner circle $=\frac{d_{1}}{2}=\frac{10 \mathrm{~cm}}{2}=5 \mathrm{~cm}$
$r_{2} \rightarrow$ radius of outer circle $=\frac{d_{2}}{2}=\frac{14 \mathrm{~cm}}{2}=7 \mathrm{~cm}$
Mean radius, $\quad r_{m}=\frac{r_{1}+r_{2}}{2}=\frac{5+7}{2}=6 \mathrm{~cm}$

Mean length, $l_{m}=2 \pi r_{m}=2 \pi \times 6 \mathrm{~cm}$

$$
l_{m}=2 \pi \times 6 \times 10^{-2} \mathrm{~m}
$$

We know, in any magnetic core,

$$
\begin{aligned}
& B=\mu H \\
& B=\mu_{0} \mu_{r}\left(\frac{N I}{l_{\text {mean }}}\right) \\
& B=4 \pi \times 10^{-7} \times 3000 \times\left(\frac{200 \times 5 \times 10^{-3}}{2 \pi \times 6 \times 10^{-2}}\right) \\
& B=10 \mathrm{~m} \text { Tesla }
\end{aligned}
$$

Question 37

Electrical Machine (MCQ)

A slip-ring induction motor is expected to be started by adding extra resistance in the rotor circuit. The benefit that is derived by adding extra resistance in the rotor circuit in comparison to the rotor being shorted is
[2 Marks]
(A) The power factor at start will be lower.
(B) The starting torque would be higher.
(C) The losses at starting will be lower.
(D) The starting current is higher.

Ans. B
Sol. From option (A) :
Rotor power factor $B=\cos \theta_{2}=\frac{R_{2}}{\sqrt{R_{2}^{2}+\left(S X_{2}\right)^{2}}}$
Rotor power factor under standstill condition,

$$
\begin{equation*}
\cos \theta_{s t}=\frac{R_{2}}{\sqrt{R_{2}^{2}+X_{2}^{2}}} \tag{i}
\end{equation*}
$$

Generally, order of rotor resistance/ph for SRIM $=0.2 \Omega$ order of standstill reactance/ph for SRIM $=2 \Omega$
In equation (i),
As $R_{2}^{2} \lll X_{2}^{2}$, so R_{2}^{2} is neglected.

$$
\therefore \quad \cos \theta_{\text {st }}=\frac{R_{2}}{\sqrt{0+X_{2}^{2}}}=\frac{R_{2}}{X_{2}}
$$

As rotor resistance increases due to external resistance, power factor at starting will be higher.
Conclusion : Option (A) is not correct.
From option (B) :
Starting torque,

$$
\begin{equation*}
T_{\mathrm{st}}=\frac{180}{2 \pi N_{S}} \times \frac{E_{2}^{2} R_{2}}{R_{2}^{2}+X_{2}^{2}} \tag{ii}
\end{equation*}
$$

In equation (ii),

As $R_{2}^{2} \lll X_{2}^{2}$, so R_{2}^{2} is neglected.

$$
\begin{array}{ll}
\therefore \quad & T_{\mathrm{st}}=\frac{180}{2 \pi N_{S}} \times \frac{E_{2}^{2} R_{2}}{X_{2}^{2}} \\
& T_{\mathrm{st}} \propto R_{2}
\end{array}
$$

As rotor resistance increases, starting toque will be increased.
Conclusion : Option (B) is correct.
From option (C) :
Rotor current is very small at standstill so rotor copper loss is also lower.
Conclusion : Option (C) is correct.
From option (D) :

Starting current, $I_{s t}=\frac{V}{R_{01}+j X_{01}}$
As resistance is increased, starting circuit of motor will be reduced.
Conclusion : Option (D) is not correct.
Note : This is a MCQ question hence, the most appropriate answer is option (B).

Question 38

Engg. Mathematics (NAT)
Consider the function $f(x)=-x^{2}+10 x+100$. The minimum value of the function in the interval $[5,10]$ is \qquad .
Ans. 100
Sol. Given : $\quad f(x)=-x^{2}+10 x+100$
Stationary point (extrema)

$$
\begin{aligned}
& f^{\prime}(x)=-2 x+10=0 \\
& x=5
\end{aligned}
$$

Double derivative,

$$
f^{\prime \prime}(x)=-2
$$

Means $x=5$ is the point of maxima
Minimum $f(x), x \in[5,10]$
Minimum $[f(5), f(10)]=100$
Hence, the correct answer is 100 .
Question 39
Consider the row vectors $V=(1,0), W=(2,0)$. The rank of the matrix $M=2 V^{T} V+3 W^{T} W$, where the superscript the transpose, is
[1 Mark]
(A) 4
(B) 2
(C) 1
(D) 3

Ans. C
Sol. Given vector are, $V=(1,0), W=(2,0)$

$$
\rho\left[2 V^{T} V+3 W^{T} W\right]=?
$$

Assuming the vector is a column matrix so,

$$
\begin{aligned}
& M=2 V^{T} V+3 W^{T} W \\
& M=2\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]+3\left[\begin{array}{ll}
2 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
0
\end{array}\right]=[14] \\
& M=[14]
\end{aligned}
$$

Range of $M=[14]$ is 1 .
Assuming the vector is a row matrix so

$$
\begin{aligned}
& M=2 V^{T} V+3 W^{T} W \\
& M=2\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
1 & 0
\end{array}\right]+3\left[\begin{array}{l}
2 \\
0
\end{array}\right]\left[\begin{array}{ll}
2 & 0
\end{array}\right] \\
& M=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
12 & 0 \\
0 & 0
\end{array}\right] \\
& M=\left[\begin{array}{cc}
14 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Rank of $M=\left[\begin{array}{cc}14 & 0 \\ 0 & 0\end{array}\right]$ is 1 .
Hence, the correct option is (C).

Question 40

Sensors (NAT)

A piezoresistive pressure sensor has a sensitivity of $1(\mathrm{mV} / \mathrm{V}) / \mathrm{kPa}$. The sensor is excited with a dc supply of 10 V and the output is read using a $31 / 2$ digit 200 mV full-scale digital multimeter. The resolution of the measurement set-up, in pascal is \qquad .
[1 Mark]
Ans. 10
Sol. Given : Sensitivity $=1 \mathrm{mV} / \mathrm{V} / \mathrm{kPa}$
An example of piezo resistive transducer is the strain gauge

$$
\begin{equation*}
V_{B}=V_{s} \times \frac{\Delta R}{R} \tag{i}
\end{equation*}
$$

Where, $\frac{\Delta R}{R}=G F \times \varepsilon$
and

$$
\begin{equation*}
\varepsilon=\frac{S}{Y} \tag{ii}
\end{equation*}
$$

Where, $V_{s}=$ Supply voltage, $V_{B}=$ Output voltage, $R=$ Nominal resistance,
$\Delta R=$ Change in resistance, $G F=$ Gauge factor, $\varepsilon=$ Strain applied
$Y=$ Young's Modulus and $S=$ Stress applied.
Based on equations (i), (ii) and (iii) and sensitivity data provided we conclude

$$
\begin{aligned}
& V_{B}=1 \mathrm{mV} \\
& V_{s}=1 \mathrm{~V} \\
& S=10^{3} \mathrm{~Pa}
\end{aligned}
$$

$\therefore \quad$ For 1 V applied and stress of $10^{3} \mathrm{~Pa}$ we get output voltage $=1 \times 10^{-3} \mathrm{~V}$
Since, actual V_{s} is 10 V .
\therefore Actual senstivity $=10 \mathrm{mV} / \mathrm{V} / \mathrm{kPa}$
Resolution of the DVM $=\frac{\text { FSV }}{\text { Number of counts }}=\frac{200}{2000}=0.1 \mathrm{mV}$
\therefore Resolution in terms of applied stress $=\frac{0.1 \mathrm{mV}}{10 \mathrm{mV} / \mathrm{V} / \mathrm{kPa}}=10 \mathrm{~Pa}$
Question 41
Optical \& Communication (NAT)
In the figure shown, a large multimode fiber with $n_{\text {core }}=1.5$ and $n_{\text {clad }}=1.2$ is used for sensing. A portion with the cladding removed passes through a liquid with refractive index $n_{\text {liquid }}$. An LED is used to illuminate the fiber from one end and a paper is placed on the other end, 1 cm from the end of the fiber. The paper shows a spot with radius 1 cm . The refractive index $n_{\text {liquid }}$ of the liquid (rounded off to two decimal places) is \qquad .

Ans. 1.322
Sol.

$$
\begin{align*}
& \frac{\sin \theta_{A}}{\sin \theta_{r}}=\frac{\mu_{\text {core }}}{\mu_{\text {air }}} \\
& \sin \theta_{A}=\frac{\mu_{\text {core }}}{\mu_{\text {air }}} \sin \theta_{A} \tag{i}
\end{align*}
$$

Now at total internal reflection,

$$
\begin{align*}
& \theta_{r}+\theta_{c}+90^{\circ}=180^{\circ} \\
& \theta_{r}+\theta_{c}=90^{\circ} \\
& \theta_{r}=90^{\circ}-\theta_{c} \\
\therefore \quad & \sin \theta_{A}=\frac{\mu_{\text {core }}}{\mu_{\text {air }}} \sin \left(\mu_{0}^{0}-\theta_{c}\right)=\frac{\mu_{c o e}}{\mu_{\text {air }}} \cos \theta_{c} \tag{ii}
\end{align*}
$$

And we know that,

$$
\begin{array}{ll}
& \cos \theta_{c}=\sqrt{1-\sin ^{2} \theta_{c}}=\sqrt{1-\frac{\mu_{\text {liq }}^{2}}{\mu_{\text {core }}^{2}}}=\sqrt{\frac{\mu_{\text {core }}^{2}-\mu_{\text {liq }}^{2}}{\mu_{\text {core }} 2}} \\
\therefore \quad & \sin \theta_{A}=\frac{\mu_{\text {core }}}{\mu_{\text {air }}} \sqrt{\frac{\mu_{\text {core }}^{2}-\mu_{\text {liq }}^{2}}{\mu_{\text {core }}}}=\sqrt{\frac{\mu_{\text {core }}^{2}-\mu_{\text {liq }}^{2}}{\mu_{\text {air }}}} \quad\left(\because \frac{\mu_{\text {core }}}{\mu_{\text {core }}}=1\right) \\
\text { Or } \quad & \frac{1}{\sqrt{2}}=\frac{\sqrt{(1.5)^{2}-\mu_{\text {liq }}^{2}}}{1} \\
& \mu_{\text {liq }}=\sqrt{(1.5)^{2}-(0.707)^{2}} \\
& \mu_{\text {liq }}=\sqrt{2.25-0.5}=1.322
\end{array}
$$

Question 42

In the bridge circuit shown, the voltmeter V showed zero when the value of the resistors are : $R_{1}=100 \Omega$, $R_{2}=110 \Omega$ and $R_{3}=90 \Omega$. If $\left(\frac{R_{1}}{R_{2}}\right)=\left(\frac{R_{A}}{R_{B}}\right)$, the value of R_{4} in ohm is \qquad .
[2 Marks]

Ans. 99

Sol. Given circuit is shown below,

Now by rotating the bridge by 90° in the clockwise direction.

The circuit looks like a Kelvin doubles bridge.

Here,

$$
P=R_{2}, Q=R_{1}, p=R_{B}, q=R_{A}
$$

and

$$
r=1 \Omega, R=R_{4}, S=R_{3}
$$

Now for balance of the Kelvin doubles bridge.

$$
\begin{aligned}
& R=\frac{P}{Q} \times S+\frac{q r}{p+q+r}\left[\frac{P}{Q}-\frac{p}{q}\right] \\
& R_{4}=\frac{R_{2}}{R_{1}} \times R_{3}+\frac{R_{A} \cdot 1}{R_{B}+R_{A}+1}\left[\frac{R_{2}}{R_{1}}-\frac{R_{B}}{R_{A}}\right]
\end{aligned}
$$

Now, given $\quad \frac{R_{2}}{R_{1}}=\frac{R_{B}}{R_{A}}$

$$
\therefore \quad R_{4}=\frac{R_{2}}{R_{1}} \times R_{3}
$$

$$
\begin{aligned}
& R_{4}=\frac{110}{100} \times 90=\frac{9900}{100} \\
& R_{4}=99 \Omega
\end{aligned}
$$

Question 43
Electromagnetic Theory (MCQ)
An infinitely long line, with uniform positive charge density, lies along the z-axis. In cylindrical coordinates (r, ϕ, z), at any point \vec{P} not on the z-axis, the direction of the electric field is [1 Mark]
(A) \hat{z}
(B) $\frac{\hat{r}+\hat{z}}{\sqrt{2}}$
(C) \hat{r}
(D) $\hat{\phi}$

Ans. C
Sol. The expression of Electric field (\vec{E})-at any arbitrary point P, from initially long line change is,

$$
\vec{E}=\frac{\rho_{L}}{2 \pi \varepsilon_{0} r} \hat{r}
$$

If infinite line charge is kept on z-axis, hence the direction would be in the direction of \hat{r}.
Hence, the correct option is (C).
Question 44
Control System (MSQ)
The step response of a circuit is seen to have an oscillatory behaviour at the output with oscillations dying down after some time. The correct inference(s) regrading the transfer function from input to output is/are
(A) that it is of at least second order.
(B) that it has at least one pole-pair that is underdamped.
(C) that it does not have a real pole.
(D) that it is a first order system.

Ans. A, B, C
Sol. For oscillation there should be atleast two energy storing element i.e. order must be atleast 2 .
As given in question step response has oscillatory behaviour at output with oscillation dying after some time. This happens when we have complex conjugate poles (i.e. response is under damped in nature i.e. $0<\xi<1$.

If poles are not conjugate pair and are lying in axis either real or imaginary axis we do not get oscillations. For second order system to unit step input
(i)

(ii)

(iii)

(iv)

$C(t)$

(Over damped)

Hence, the correct option is (A), (B) and (C).
Question 45
Optical \& Instrumentation (NAT)
A laser pulse is sent from ground level to the bottom of a concrete water tank at normal incidence. The tank is filled with water up to 2 m below the ground level. The reflected pulse from the bottom of the tank travels back and hits the detector. The round-trip time elapsed between sending the laser pulse, the pulse hitting the bottom of the tank, reflecting back and sensed by the detector is 100 ns . The depth of the tank from ground level marked as x in metre is \qquad . (Refractive index of water $n_{\text {water }}=1.3$ and velocity of light in air $C_{\text {air }}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)

(A) 10
(B) 11
(C) 12
(D) 9

Ans. C
Sol. Given arrangement is shown below,

$$
\begin{aligned}
& V=\frac{d}{t} \\
& t=\frac{d}{V}
\end{aligned}
$$

41

$$
\begin{gathered}
\text { Refractive index }(\mu) \propto \frac{1}{\text { Velocity of Ray in medium }} \\
\mu_{\text {water }} \propto \frac{1}{v_{\text {water }}} \\
\mu \propto \frac{1}{V} \\
\frac{\mu_{1}}{\mu_{2}}=\frac{v_{2}}{v_{1}} \\
\frac{\mu_{\text {air }}}{\mu_{\text {water }}}=\frac{v_{\text {water }}}{v_{\text {air }}} \\
\frac{1}{1.3}=\frac{v_{\text {wter }}}{v_{\text {air }}} \\
v_{\text {water }}=2.31 \times 10^{8} \mathrm{~m} / \mathrm{sec} \\
\text { Time }=\frac{2 d_{\text {air }}}{V_{\text {air }}}+\frac{2 d_{\text {water }}}{V_{\text {water }}} \\
100 \times 10^{-9}=2 \times \frac{2}{3 \times 10^{8}}+\frac{2(x-2)}{2.31 \times 10^{8}} \\
100 \times 10^{-9}=\frac{1}{10^{8}}\left[\frac{4}{3}+\frac{2 \mathrm{x}}{2.31}-\frac{4}{2.31}\right] \\
10=1.33+0.87 x-1.73 \\
11.73-1.33=0.87 \mathrm{x} \\
x=\frac{10.4}{0.87}=11.95 \simeq 12 \mathrm{~m}
\end{gathered}
$$

Question 46
A J-type thermocouple has an output voltage $V_{\theta}=\left(13650+50 \theta_{x}\right) \mu \mathrm{V}$, where θ_{x} is the junction temperature in Celsius $\left({ }^{0} \mathrm{C}\right)$. The thermocouple is used with reference junction compensation, as shown in the figure. The instrumentation amplifier used has a gain $G=20$. If $\theta_{\text {Ref }}$ is $1{ }^{\circ} \mathrm{C}$, for an input θ_{x} of $100^{\circ} \mathrm{C}$, the output V_{0} of the instrumentation amplifier in millivolt is
[2 Marks]

(A) 98 mV
(B) 100 mV
(C) 101 mV
(D) 99 mV

Ans. D

Sol. Method 1 :

Given :

Instrumentation amplifier gain $=20$
Reference junction temperature $=1^{\circ} \mathrm{C}$
Hot junction temperature $=100^{\circ} \mathrm{C}$

Now, output voltage of the hot junction,

$$
\begin{aligned}
& V_{1}=(13650+50 \times 100) \mu \mathrm{V} \\
& V_{1}=18650 \mu \mathrm{~V}
\end{aligned}
$$

Output voltage of reference junction,

$$
\begin{aligned}
& V_{2}=(13650+50 \times 1) \mu \mathrm{V} \\
& V_{1}=13700 \mu \mathrm{~V} \\
& V_{0}=A\left(V_{1}-V_{2}\right) \\
& V_{0}=20(18650-13700) \\
& V_{0}=20 \times 4950=99000 \mu \mathrm{~V} \\
& V_{0}=99 \mathrm{mV}
\end{aligned}
$$

Now,

Method 2 :

Given : $V_{\theta}=\left(13650+50 \theta_{\chi}\right) \mu_{v}$
Sensitivity $=S=\frac{d V_{\theta}}{d \theta_{x}}=50 \mu \mathrm{~V} /{ }^{0} \mathrm{C}$
From diagram, $V_{0}=G V_{T . C}=20 \times \frac{S}{T C}\left[T_{H}-T_{C}\right]$

$$
\begin{aligned}
& V_{0}=20 \times 50 \frac{\mu v}{C}\left[\theta-\theta_{\text {ref }}\right] \\
& V_{0}=20 \times 50 \frac{\mu v}{C}\left[100^{0}-1\right]^{0} \\
& V_{0}=20 \times 50 \times 10^{-6} \times 99=99 \mathrm{mV}
\end{aligned}
$$

Question 47
An air core coil having a winding resistance of 10Ω is connected in series with a variable capacitor C_{x}. The series circuit is excited by a 10 V sinusoidal voltage source of angular frequency $1000 \mathrm{rad} / \mathrm{s}$. As the
value of the capacitor is varied, a maximum voltage of 30 V was observed across it. Neglecting skineffect, the value of the inductance of the coil in millihenry is \qquad .
[2 Marks]
Ans. 30
Sol. According to question, given RLC circuit is shown below,

Voltage across capacitor and inductor becomes maximum only when circuit is in resonance.
In resonance $\left|V_{C}\right|=Q|V|$
So, $\quad Q=\frac{\left|V_{C}\right|}{|V|}=\frac{30}{10}=3$
Also, $\quad Q=\frac{\omega_{0} L}{R}=\frac{1000 \times L}{10}$

$$
L=\frac{30}{1000} \mathrm{H}=30 \mathrm{mH}
$$

Question 48

A $31 / 2$ digit rectifier type digital meter is set to read in its 2000 V range. A symmetrical square wave of frequency 50 Hz and amplitude $\pm 100 \mathrm{~V}$ is measured using the meter. The meter will read \qquad _.
[2 Marks]
Ans. 100
Sol. Rectifier type digital meter reads average value of signal. By default we consider full wave rectifier

Output W/f of rectifier,

\therefore Voltage read $=100 \mathrm{~V}$.

Question 49

Microprocessor (MCQ)

A 16-bit microprocessor has twenty address lines $\left(A_{0}\right.$ to $\left.A_{19}\right)$ and 16 data lines. The higher eight significant lines of the data bus of the processor are tied to the 8 data lines of a 16 Kbyte memory that can store 1-byte in each of its 16 K address location. The memory chip should map onto contiguous memory locations and occupy only 16 Kbyte of memory space. Which of the following statement(s) is/are correct with respect to the above design?
(A)If the 16 Kbyte of memory chip is mapped with a starting address of 80000 H , then the ending address will be 83 FFFH .
(B) The active high chip-select needed to map 16 Kbyte memory with starting address at F 0000 H is given by the logic expression ($\left.A_{19} \cdot A_{18} \cdot A_{17} \cdot A_{16}\right)$.
(C) The 16 Kbyte memory cannot be mapped with continuous address location with a starting address as 0 F 000 H using only A_{19} to A_{14} for generating chip select.
(D) The above chip cannot be interfaced as the width of the data bus of the processor and memory chip differs.

Ans. A, B, C
Sol. $\quad 16 \mathrm{kB}$ memory $=2^{4} k \times 8=2^{4} \times 10^{10} \times 8=2^{14} \times 8$
$\therefore 14$ address lines and 8 data lines are required.
Since, 8 data lines of processor is available for memory. So connection is possible.
So, option (D) is wrong

A_{13}	A_{12}	A_{11}	A_{10}	A_{9}	A_{8}	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000 H
1	1	1	1	1	1	1	1	1	1	1	1	1	1	3 FFFH

Offset $=3$ FFFH $-0000 \mathrm{H}=3$ FFFH
Now if starting address is 80000 H , then
Ending address $=$ Starting address + Offset

$$
=80000 H+3 F F F H=83 F F F H
$$

So, option (A) is correct.
Given in option (B) active high chip select (Cs) is needed.
If $A_{19} \cdot A_{18} \cdot A_{17} \cdot A_{16}$ is the input to CS then to enable chip this function should be 1 . Now starting address is F0000H and ending address will be (F0000H $+3 \mathrm{FFFH}=\mathrm{F} 3 F F F F H)$

| A_{19} | A_{18} | A_{17} | A_{16} | A_{15} | A_{14} | A_{13} | A_{12} | A_{11} | A_{10} | A_{5} | A_{8} | A_{7} | A_{6} | A_{5} | A_{4} | A_{3} | A_{2} | A_{1} | A_{0} |
| :---: |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Now, for given address $A_{10} \cdot A_{18} \cdot A_{17} \cdot A_{16}=1$ (always). Hence this expression can be used for chip select.
So, option (B) is correct.
If starting address is 0 F 000 H , then ending address $=0 \mathrm{~F} 000 \mathrm{H}+3 \mathrm{FFFH}=12 \mathrm{FFFH}$

$$
\begin{array}{ccccccccccccccccc}
A_{16} & A_{15} & A_{14} & A_{13} & A_{12} & A_{11} & A_{10} & A_{9} & A_{8} & A_{7} & A_{6} & A_{5} & A_{4} & A_{3} & A_{2} & A_{1} & A_{0} \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

For the given address range we need A_{0} to A_{15} address lines. Remaining address lines only can be used for chip select.
Hence, option (C) is also correct.
Hence, the correct options are (A), (B) \& (C).

Question 50

A bar primary current transformer of rating $\frac{1000}{1}$ A. 5 VA, UPF has 995 secondary turns. It exhibits zero ratio error and phase error of 30 minutes at 1000 A with rated burden. The watt loss component of the primary excitation current in ampere is \qquad (rounded off to one decimal place).
[2 Marks]
Ans. 5
Sol. Given :
$N_{p}=1$
$R=$ True ratio $=\frac{1000}{1}$
$k=$ Nominal ratio $=$?
$R=k$
$\cos \phi=\mathrm{UPF}=1$
$N_{s}=995$
Ratio error $=0$
Phase error $=30 \mathrm{~min}$
$\delta=0$
$\cos \delta=1$
$\sin \delta=0$

$$
n=\frac{N_{s}}{N_{p}}
$$

Percentage ratio $=\frac{\text { Measured value }- \text { True value }}{\text { True value }} \times 100=\frac{k-R}{R} \times 100$

Where, $k=$ Nominal ratio, $R=$ True ratio, Ratio error $e_{r r}=0$.

$$
k=R=1000
$$

$$
R=n+\left[\frac{I_{w} \cos \delta+I_{\mu} \sin \delta}{I_{s}}\right]
$$

$$
1000=\frac{N_{s}}{N_{p}}+\left[\frac{I_{\mathrm{w}}}{I_{s}}+0\right]
$$

$$
1000=\frac{995}{1}+I_{w}
$$

$$
I_{w}=5 \mathrm{~A}
$$

Question 51
A $300 \mathrm{~V}, 5 \mathrm{~A}$, LPF wattmeter has full scale of 300 W . The wattmeter can be used for loads supplied by 300 V ac mains with a maximum power factor of \qquad (rounded off to one decimal place)
[1 Mark]
Ans. 0.2
Sol. Given :
(i) $V=300 \mathrm{~V}$
(ii) $I=5 \mathrm{~A}$
(iii) $P_{m}=300 \mathrm{~W}$

$$
P=V I \cos \phi
$$

Maximum power factor, $\cos \phi=\frac{P_{m}}{V I}=\frac{300}{300 \times 5}=0.2$

$$
\cos \phi=0.2
$$

Question 52
Input-output characteristic of a temperature sensor is exponential for a
(A) Mercury thermometer
(B) Resistive temperature device (RTD)
(C) Thermistor
(D) Thermocouple

Ans. C
Sol. Input-output characteristics is exponential for thermistor.
Hence, the correct option is (C).
Question 53

The power in a 400 V (rms, line-line) three-phase, three-wire RYB sequence system is measured using the two wattmeters, as shown. The R-line current is $5 \angle 60^{\circ} \mathrm{A}$. Wattmeter W_{1} in the R-line read (in watt)
\qquad .

Ans. 0
Sol. Given :
(i) $\left(V_{L}\right)_{r m s}=400 \mathrm{~V}$
(ii) $I_{R}=5 \angle 60^{\circ}$

Reading of wattmeter 1 is given by,

$$
\begin{aligned}
& W_{1}=V_{L} I_{L} \cos \phi \\
& W_{1}=V_{R B} I_{R} \cos \phi
\end{aligned}
$$

Question 54

Electromagnetics (NAT)

The figure below shows an electrically conductive bar of square cross-section resting on a plane surface. The bar of mass of 1 kg has depth of 0.5 m along the y direction. The coefficient of friction between the bar and the surface is 0.1 . Assume the acceleration due to gravity to be $10 \mathrm{~m} / \mathrm{s}^{2}$. The system faces a uniform flux density $B=-1 \hat{z} T$. At time $t=0$, a current of 10 A is switched onto the bar and it maintained.

When the bar has moved by 1 m , its speed in metre per second is \qquad (rounded off to one decimal place).
Ans. 2.828
Sol. Equation of motion,

$$
v^{2}-u^{2}=2 a s
$$

$$
v^{2}=2 a s
$$

Two forces are experienced by bar

1. Magnetic force by current carrying conductor $\left(F_{B}\right)$.
2. Kinetic friction force against the direction of movement $\left(F_{k}\right)$.

$$
F_{\text {total }}=F_{B}-F_{k}
$$

As F_{k} is against the F_{B},

Lets assume current is flowing in direction of $-\hat{a}_{y}$
Calculation of F_{B} :
Method 1: $\quad F_{B}=|I d||B| \sin \theta$

$$
\begin{aligned}
& \theta=\text { Angle between } I \text { and } B=90^{\circ} \\
& F_{B}=10 \times 0.5 \times 1 \times \sin 90^{\circ}=5 \mathrm{~N}
\end{aligned}
$$

Method 2: $\quad F_{B}=I \vec{d} \times \vec{B}$

$$
F_{B}=10 \times 0.5\left(-\hat{a}_{y}\right) \times\left(-1 \hat{a}_{z}\right)=5 \mathrm{~N}
$$

Calculation of F_{k} :

$$
F_{k}=\mu_{k} m g
$$

Where, $\mu_{k}=$ Coefficient of friction
$m=$ Mass of bar and
$g=$ Gravity due to earth.

$$
\begin{aligned}
& F_{k}=0.1 \times 1 \times 10=1 \mathrm{~N} \\
& F_{\text {total }}=F_{B}-F_{k}=5-1=4 \mathrm{~N}
\end{aligned}
$$

So that, $\quad V^{2}=2 a s$
$\because \quad a=\frac{F_{\text {total }}}{\text { Mass }}=\frac{4}{1}=4 \mathrm{~m} / \mathrm{sec}^{2}$

$$
\begin{array}{ll}
V^{2}=2 \times 4 \times 1 & (\because s=1 \mathrm{~m}) \\
V=\sqrt{8}=2.82842 \mathrm{~m} / \mathrm{s} &
\end{array}
$$

Question 55

Electrical Machines (MCQ)

A single-phase transformer has maximum efficiency of 98%. The core losses are 80 W and the equivalent winding resistance as seen from the primary side is 0.5Ω. The rated current on the primary side is 25 A . The percentage of the rated input current at which the maximum efficiency occurs is
(A) 35.7%
(B) 80.5%
(C) 50.6%
(D) 100%

Ans. C
Sol. Given :
(i) Core loss $=80 \mathrm{~W}$
(ii) $R_{1}=0.5 \Omega$
(iii) $I_{1 \text { (rated) }}=25 \mathrm{~A}$

50
(iv) $\eta=98 \%=0.98$

Transformer efficiency is given by,

$$
\eta=\frac{x S \cos \phi}{x S \cos \phi+P_{\text {core }}+x^{2} P_{\text {copper }}}
$$

For maximum efficiency, $x^{2} P_{\text {copper }}=P_{\text {core }}$

$$
\begin{aligned}
& x^{2} I_{1}^{2} R_{1}=P_{\text {core }} \\
& x^{2} \times 25^{2} \times 0.5=80 \\
& x=0.5059 \\
& \% x=0.5059 \times 100=50.6 \%
\end{aligned}
$$

General Aptitude

Question 56

Aptitude

Following shape has equal length segments $P R, P S, Q S, T R$ and $T Q$ are of equal length, what will be the angle θ ?
[2 Marks]

(A) 36
(B) 108
(C) 72
(D) 45

Ans. (A)
Sol. Here, star shape will all sequent are equal is shown below,

$\therefore \quad \angle P=\angle T=\angle S=\angle R=\angle Q=\theta \quad$ (Equal sides of triangle have equal angle)
In $\triangle T B R$,

$$
\operatorname{Ext} \angle B=2 \theta \quad \ldots \text { (i) } \quad(\because \text { Sum of opposite interior angle }=\text { Exterior angle })
$$

In $\triangle Q A S$,

$$
\begin{equation*}
\operatorname{Ext} \angle A=2 \theta \tag{ii}
\end{equation*}
$$

In $\triangle P A B$,

\because Sum of all interior angles in a $\Delta=180^{\circ}$.

$$
\begin{array}{ll}
\therefore \quad & \theta+2 \theta+2 \theta=180^{\circ} \\
& \theta=36^{\circ}
\end{array}
$$

Hence, the correct option is (A)

Question 57

Aptitude

Let \oplus and \odot are two operators on numbers p and q such that $p \oplus q=\frac{p^{2}+q^{2}}{p q}$ and $p \odot q=\frac{p^{2}}{q}$, if $x \oplus y$ $=2 \odot 2$, then x will be equal to
[1 Mark]
(A) y
(B) 2 y
(C) $y / 2$
(D) $3 y / 2$

Ans. A
Sol. Given :
$\mathrm{p} \oplus \mathrm{q}=\frac{\mathrm{p}^{2}+\mathrm{q}^{2}}{\mathrm{pq}}$
$\therefore \quad \mathrm{x} \oplus \mathrm{y}=\frac{\mathrm{x}^{2}+\mathrm{y}^{2}}{\mathrm{xy}}$
and $\quad \mathrm{p} \odot \mathrm{q}=\frac{\mathrm{p}^{2}}{\mathrm{q}}$

$$
\begin{equation*}
\therefore \quad 2 \odot 2=\frac{2^{2}}{2}=2 \tag{ii}
\end{equation*}
$$

From equation (i) and (ii),

$$
\begin{array}{ll}
& \frac{x^{2}+y^{2}}{x y}=2 \\
\therefore \quad & x^{2}+y^{2}-2 x y=0
\end{array}
$$

$$
\begin{array}{ll}
& (\mathrm{x}-\mathrm{y})^{2}=0 \\
\therefore \quad & \mathrm{x}=\mathrm{y} \text { satisfy the condition. }
\end{array}
$$

Question 58

Aptitude

In a company, 35% employees drink coffee, 40% drink tea and 10% drink both tea and coffee. Then how much \% of employees will neither drink tea nor coffee?
[1 Mark]
(A) 25
(B) 35
(C) 40
(D) 15

Ans. B
Sol. \quad Given : Employees drink coffee $=35 \%$
Employees drink tea $=40 \%$
Employees drink both tea and coffee $=10 \%$
So from above data we can easily sketch Venn diagram,

Both

$25+10+30=65 \%$ employees are those who either takes coffee or tea or both.
$\therefore \quad(100-65) \%=35 \%$ are those who neither take coffee nor tea.

Question 59

Aptitude
What will be the mirror image of the following word TRIANGLE if mirrored along x -axis.
[1 Mark]

The mirror image of the above text about the X -axis is
(A) \perp В $\mid \forall И ワ Г E$
(B) \perp ВI \forall ИГГ
(c) \perp BI $\forall N C \Gamma E$
(D) \perp Bl \forall ИC「 \exists

Ans. B
Sol. If mirror is placed on x-axis, then the correct image is

Question 60
Statements : Either P marries Q or X marries Y. Among the given option below, the logical negation of the above statements is,
[2 Marks]
(A) Neither P marries Q nor X marries Y .
(B) P does not marry Q and X marries Y
(C) P marries Q and X marries Y .
(D) X does not marries Y and P marries Q .

Ans. A
Sol. As we are directed to do logical negation, of given statement, situation of "either or" will becomes "Neither nor"
as :

$$
\begin{aligned}
& P=Q \\
& P \neq Q
\end{aligned}
$$

$$
X=Y
$$

Negation :
$X \neq Y$
Hence, the correct option is (A).

Question 61

Aptitude

Four persons $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are to be seated in a row, facing same direction, but not necessary in the same order. P and R can not be seated adjacent to each other, S should be seated to the right of Q , then how many distinct seating arrangement is possible?
[1 Mark]
(A) 4
(B) 2
(C) 8
(D) 6

Ans. D
Sol. Condition 1 : P and R can not sit adjacent to each other.
Condition 2 : S should be seated to the right of Q ,
According to this all possible cases will be

1. Q P S R
2. Q R S P
3. $\mathrm{P} Q \mathrm{~S} R$
4. R Q S P
5. $\mathrm{P} Q \mathrm{R} \mathrm{S}$
6. R Q P S

Hence, the correct option is (D).

Question 62

Aptitude
Consider two rectangular sheets, M and N of identical dimensions of $6 \times 4 \mathrm{~cm}$ each
Folding operation (i): The sheet is folded into half by joining the short edges of the current shape.
Folding operation (ii) : The sheet is folded into half by joining the long edges of the current shape.
Folding operation (i) is carried out on sheet M 3 times.
Folding operation (ii) is carried out on sheet N 3 times.
The ratio of perimeters of the final folded shape of sheet N to the final folded shape of sheet M is.
[2 Marks]
(A) $3: 2$
(B) $7: 5$
(C) $13: 7$
(D) $5: 13$

Ans. C
Sol. According to given data, we can proceed step by step as given below,

M
$1^{\text {st }}$ folding: (Respective of short edges)

$2^{\text {nd }}$ folding: (Respective of short side)

$3^{\text {rd }}$ folding: (Respective of short side)

Perimeter of folded shape $M=7$

$\therefore \quad$ Ratio of perimeters of the final folded shape N to the final folded shape of sheet M is 13:7.

Question 63

A function $\lambda(p, q)$ is defined by

$$
\lambda(p, q)=\left\{\begin{array}{cl}
(p-q)^{2}, & \text { if } p \geq q \\
p+q, & \text { if } p<q
\end{array}\right.
$$

The value of expression $\frac{\lambda(-(-3+2),(-2+3)}{[-(-2+1)]}$ will be
$2^{\text {nd }}$ folding: (Respective of long side)

$3^{\text {rd }}$ folding: (Respective of long side)

Perimeter of folded shape $\mathrm{N}=13$

GATE ACADEMY
55
Indrumentation
steps to success...

$$
\begin{array}{ll}
\because & p=q=1 \\
\therefore & \lambda(1,1)=(1-1)^{2}=0
\end{array}
$$

Hence, the correct option is (A).
Question 64
Aptitude
Getting to the top is \qquad than staying in top
(A) Easier
(B) More Easier
(C) Much Easier
(D) Easiest

Ans. A
Sol. Getting to the top is easier than staying in top.
Hence, the correct option is (A).

Question 65

Aptitude

Human have the ability to construct worlds entirely in their minds, which does not exist in the physical world. So far as we know, no other species possess this ability. This skill is so important that we have different words to refer to its different factors, such as imagination, invention and innovation. With respect to above, which of the following is correct?
[2 Marks]
(A) The terms imagination, invention and innovation refer to unrelated skills.
(B) No species possess the ability to construct worlds in their mind.
(C) Imagination, invention and innovation are un-related to the ability to construct mental worlds.
(D) We don't know of any species other than humans who posses the ability to construct mental worlds.

Ans. D
Sol. As given in the above passage "so far as we know, no other species posses this ability". By this we can conclude option D is correct.

