Question 1.
MCQ (1M)
Question ID : 8232513092
A transparent square sheet shown above is folded along the dotted line. The folded sheet will look like \qquad

(A)

(B)

(C)

(D)

Ans. (A)
Sol. Given:

Mirror image of the left part of given image is

After combining both we get,

Question 2.
MCQ (1M)
Question ID : 8232513093
If θ is the angle, in degree, between the longest diagonal of the cube and any one of the edges of the cube, then $\cos \theta=$
(A) $\frac{1}{\sqrt{3}}$
(B) $\frac{1}{\sqrt{2}}(\mathrm{C})$
$\frac{1}{2}$
(D)
$\frac{\sqrt{3}}{2}$

Ans. (A)
Sol.

$$
\begin{aligned}
& \because \quad \cos \theta=\frac{\text { Adjacent side }}{\text { Hyp }} \\
& \because \quad \text { Diagonal of a cube }=\sqrt{3} a \\
& \\
& \text { Adjacent side }=\text { Each side }=a \\
& \therefore \\
& \cos \theta=\frac{a}{a \sqrt{3}}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Question 3.

The number of students in three classes is in the ratio $3: 13: 6$. If 18 students are added to each class, the ratio changes to $15: 35: 21$.
The total number of students in all the three classes in the beginning was:
(A) 110
(B) 66 (C) 22
(D) 88

Ans. (D)
Sol. Given :
The ratio of number of students of three classes is $=3: 13: 6$
Let the number of students in each class is $3 x, 13 x, 6 x$

Therefore the ratio will become $3 x: 13 x: 6 x$
After implementing the given condition,

$$
\begin{align*}
& 3 x+18=15 y \tag{i}\\
& 13 x+18=35 y \\
& x+18=21 y \tag{ii}\\
& 2 \times 3 x+18 \times 2=15 y \times 2 \\
& 6 x+18=21 y \\
& 6 x+36=30 y \\
& 6 x+18=21 y \\
& x=4 \quad y=2
\end{align*}
$$

\therefore The total number students in all the three classes in the beginning

$$
=22 x=22 \times 4=88
$$

Question 4.

Pen: Write :: Knife : \qquad
Which one of the following options maintains a similar logical relation in the above.
(A) Sharp
(B) Cut
(C) Blunt
(D) Vegetables.

Ans. (B)
Sol. Given: relation is object and its purpose
Pen is used to Write,
Similarly, Knife is used to Cut.

Question 5.

If $\left(x-\frac{1}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}=x+2$, then value of x is.

(A) 6
(B) $4 \quad$ (C)
8 (D)
2

Ans. (B)
Sol. Given:

$$
\begin{aligned}
& \left(x-\frac{1}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}=x+2 \\
& \left(x-\frac{1}{2}-x+\frac{3}{2}\right)\left(x-\frac{1}{2}+x-\frac{3}{2}\right)=x+2
\end{aligned}
$$

$2 x-2=x+2$
$\therefore \quad x=4$
Question 6.

MCQ (1M)
Question ID : 8232513091

Gauri said that she can play the keyboard \qquad her sister.
(A) As worse as
(B) As nicest as
(C) As better as
(D) As well as

Ans. (D)
Sol. The structure as... as is used to compare things that are of similar proportion. In this case the first as acts as an adverb modifying the adjective or adverb that goes after it. The second as can act as a preposition or conjunction. If it is used as a preposition, it will be followed by a noun or pronoun.
"As X as" is a comparison of equals.
"Better than" is not.
Therefore, better, worse, nicest can not be used in equality comparison.
Question 7.
MCQ (2M)
Question ID : 8232513100
Six students P, Q, R, S, T and U with distance height, compare their heights and make the following observations.
Observation I: S is taller than R
Observation II: Q is shorter of all
Observation III: U is taller than only 1 student
Observation IV: T is taller than S but is not tallest
The number of students that are taller than R is the same as number of student shorter than \qquad .
(A) T
(B) R
(C) S
(D) P

Ans. (C)
Sol. Given:
S is taller than $R \quad \mathrm{~S}>\mathrm{R}$
Q is shorter of all $\gg \mathrm{Q}$
U is taller than only 1 student $\mathrm{U}>\square$
T is taller than S but is not tallest $\square>\mathrm{T}>\mathrm{S}$
Combining all drafted information \& make possible case.
1- P
2- T
3- S
4- R

5- U
6- Q
Hence it is clear that the numbers of students taller then R is the same as the numbers of students shorter than S .

Question 8.

Question ID : 8232513097

A jigsaw puzzle has 2 pieces. One of the pieces is shown above. Which one of the given options for the missing piece when assembled will form a rectangle? The piece can be moved, rotated or flipped to assemble with the above piece.

Ans. (B)
Sol. For assembling the 2 pieces to form a rectangle,
First; flip the figure to left side and rotate it to 90° clock wise direction and assume to put it on question figure.

Hence, the correct option is (B).

Question 9.
Question ID : 8232513096
Listening to music during exercise improves exercise performance and reduces discomfort. Scientists researched whether listening to music while studying can help students learn better and the results were inconclusive. Students who needed external stimulation for studying fared worse while students who did not need any external stimulation benefited from music.
Which one of the following statements is the CORRECT inference of the above passage?
(A) Listening to music has a clear positive effect on physical exercise. Music has a positive effect on learning only in some students.
(B) Listening to music has a clear positive effect both on physical exercise and on learning.
(C) Listening to music has a clear positive effect on learning in all students. Music has a positive effect only in some students who exercise.
(D) Listening to music has no effect on learning and a positive effect 011 physical exercise.

Ans. (A)

Sol. Given:

Listening to music during exercise improves exercise performance and reduces discomfort.
Effect of music on students depends on the type of students.
Therefore, listening to music has a clear positive effect on physical exercise. Music has a positive effect on learning only in some students.
Question 10.

The number of units of a product sold in three different years and the respective net profits are presented in the figure above. The cost/unit in Year 3 was Rs.1, which was half the cost/unit in Year 2.

The cost/unit in Year 3 was one-third of the cost/unit in Year 1. Taxes were paid on the selling price at $10 \% .13 \%$ and 15% respectively for the three years. Net profit is calculated as the difference between the selling price and the sum of cost and taxes paid in that year.
The ratio of the selling price in Year 2 to the selling price in Year 3 is \qquad
(A) $3: 4$
(B) $1: 1$
(C) $1: 2$
(D) $4: 3$

Ans. (D)

Sol. Given :

cost per unit of year $3=$ Rs. 1
and Cost per unit of year $3=($ cost per unit of year 2$) / 2$
So, cost per unit of year $2=2 *$ cost per unit of year $3=2 * 1=2$.
Let selling price of year $2=\mathrm{sp} 2$ and selling price of year $3=\mathrm{sp} 3$.
we have taxes in year 2 and 3 as 13% and 15% of selling price respectively.
Tax in year $2=13 * \operatorname{sp} 2 / 100=.13^{*} \operatorname{sp} 2$
Tax in year $3=15 * \operatorname{sp} 3 / 100=0.15 *$ sp3
profit in year $2=$ selling price in year $2-($ cost of all units + tax in year 2$)$
$296=\operatorname{sp} 2-(200 * 2+0.13 * \operatorname{sp} 2)$
$296=\mathrm{sp} 2-400-0.13 \mathrm{sp} 2$
$296+400=0.87 *$ sp2
$696 * 100 / 87=\mathrm{sp} 2$
$\mathrm{sp} 2=800$.
profit in year $3=$ selling price in year $3-($ cost of all units + tax in year 3$)$
$210=\mathrm{sp} 3-(300 * 1+0.15 * \mathrm{sp} 3)$
$210=\mathrm{sp} 3-300-0.15 \mathrm{sp} 3$
$210+300=0.85 * \operatorname{sp} 3$
$510 * 100 / 85=$ sp3
$\mathrm{sp3}=600$.
Ratio of selling price in year 2 to selling price in year 3
= 800/600
$=4 / 3$

> | Technical Section |
| :--- |

Question 11.

Consider the following ANSI C function:
int SomeFunction (int x, int y)
\{
if $(x=1) \|(y==1))$ return 1 ;
if $(x==y)$ return x ;
if $(x>y)$ return $\operatorname{SomeFunction}(x-y, y)$;
if $(y>x)$ return $\operatorname{SomeFunction}(x, y-x)$;
\}
The value returned by SomeFunction $(15,255)$ is \qquad
Ans. 15
Sol. Given:
int SomeFunction (int x, int y)
\{
if $(x=1) \|(y==1))$ return 1 ;
if $(x==y)$ return x ;
if $(x>y)$ return SomeFunction $(x-y, y)$;
if $(y>x)$ return $\operatorname{SomeFunction}(x, y-x)$;
\}
Now, after calling
SomeFunction $(15,255)$
$\{255>15\}$ Therefore line (3) will execute.
\longrightarrow SomeFunction $(15,240)$ $\{240>15\}$ Therefore line (3) will execute.

SomeFunction $(15,225)$
$\{225>15\}$ Therefore line (3) will execute.
SomeFunction $(15,210)$
$\{210>15\}$ Therefore line (3) will execute.
:
SomeFunction $(15,15)$
$\{15==15\}$ Therefore line (2) will execute.
Hence the function call will return 15
Question 12.

Consider the following ANSI C program.
\#include <stdio.h>
int foo(int x, int y, int q)
\{if $((x<=0) \& \&(y<=0))$
return q;
if ($\mathrm{x}<=0$)
return foo(x, y-q, q);
if ($\mathrm{y}<=0$)
return foo(x-q, y, q);
return foo ($x, y-q, q)+$ foo $(x-q, y, q)$
int main()
\{
int $\mathrm{r}=\mathrm{foo}(15,15,10)$;
printf ('"/d", r) ;
return 0;
\}
The output of the program upon execution is \qquad
Ans. 60
Sol.

Question 13.

Consider a complete binary tree with 7 nodes. Let A denote the set of first 3 elements obtained by performing BFS starting from root. Let B denote the set of 3 elements obtained by performing DFS state starting from root. The value of $|A-B|$ is \qquad
Ans 1
Sol. consider the following complete binary tree

$\mathrm{A}=$ set of first 3 elements obtained by BFS
$A=\{a, b, c\}$
$B=$ set of first 3 elements obtained by DFS
$B=\{a, b, d\}$
$A-B=\{c\}$
$|A-B|=1$
Question 14.
Question ID : 8232513135
Consider the following ANSI C program:

```
#include <stdio.h>
#include <stdlib.h>
struct Node{
int value;
struct Node *next;};
int main(){
struct Node *boxE, *head, *boxN; int index = 0;
boxE = head = (struct Node *) malloc(sizeof(struct Node));
head->value = index;
for (index = 1; index <= 3; index++)
{
    boxN = (struct Node *) malloc(sizeof(struct Node));
    boxE->next = boxN;
    boxN->value = index;
    boxE = boxN; }
for (index = 0; index <= 3; index++) {
```

printf ("Value at index \%d is \%d\n", index, head->value);
head = head->next;
printf ("Value at index \%d is \%dln", index+1, head->value); \} \}
Which one of the statements below is correct about the program?
(A) Upon execution, the program goes into an infinite loop.
(B) It has a missing return which will be reported as an error by the compiler.
(C) Upon execution, the program creates a linked-list of five nodes.
(D) It dereferences an uninitialized pointer that may result in a run-time error.

Ans. (D)
Sol. The linked list of four nodes will be created.
First node: value $=0$
Second node : value $=1$
Third node $:$ value $=2$
Fourth node : value $=3$
The last for loop will print the index number and the values
In the last iteration when index $=3$
head = head-> next // typing to access the unknown memory location because the fifth node is not there.

Hence the segmentation fault or run time error will come here.
Question 15.
MCQ (1M)
Question ID : 8232513102
Let H be a binary min-heap consisting of n elements implemented as an array. What is the worst case time complexity of an optimal algorithm to find the maximum element in $H /$?
(A) $\Theta(\log n)$
(B) $\quad \Theta(1)$
(C) $\Theta(n \log n)$
(D) $\Theta(n)$

Ans. (D)
Sol. In a min heap maximum element is present at leaf node we need to navigate through the leaf node i.e. $\mathrm{n} / 2$ node Hence $\mathrm{O}(\mathrm{n})$.

Question 16.

Question ID : 8232513110
Consider the following ANSI C program:
int main()
\{ int a[4][5];
int i, j;
for ($\mathrm{i}=0 ; \mathrm{i}<4 ; \mathrm{i}++$)
for $(\mathrm{J}=0 ; \mathrm{j}<5 ; \mathrm{j}++$)
$\mathrm{a}[\mathrm{i}][\mathrm{j}]=10 * \mathrm{i}+\mathrm{j}$;
printf ("\%d",*(a[1] + 9));\}
Find the output of the above problem
(A) 20
(B) 24
(C) 30
(D) 14

Ans. (B)
Sol. After the execution of program the content of the array will be

	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$
$[0]$	0	1	2	3	4
$[1]$	10	11	12	13	14
$[2]$	20	21	22	23	24
$[3]$	30	31	32	33	34

$*(\mathrm{a}[1]+9)=\mathrm{a}[2][4]=24$

Question 17.

Consider string aabbccddeee. Each letter of a string must be assigned a binary code satisfying the following properties.

1. For any two letters the code to one letter must be a prefix of code assigned to another letter.
2. For any two letters of the same frequency, the letter which occurs earlier in the dictionary order is assigned a code whose length is at most the length of code assigned to another letter.

Among a set of all binary code assignments which satisfy above two properties. What is the length of the encoded string?
(A) 25
(B) 23
(C) 21
(D) 30

Ans (B)
Sol. Using Huffman Coding-

GATE ACADEMY'

Character	Frequency	Encoding
a	1	100
b	2	101
c	2	00
d	2	01
e	3	11

Hence length of encode string is $=1 * 3+2 * 3+2 * 2+2 * 2+3 * 2=3+6+4+4+6=23$
Question 18.
MCQ (2M)
Question ID : 8232513139
For constants $a \geq 1$ and $b>1$, consider the following recurrence defined on the non-negative integers:

$$
T(n)=a \cdot T\left(\frac{n}{b}\right)+f(n)
$$

Which of the following options is correct about the recurrence $T(n)$?
(A) if $f(n)$ is $\Theta\left(n^{\log _{b}(a)}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b}(a)}\right)$
(B) if $f(n)$ is $\Theta\left(n^{\log _{b}(a)-\varepsilon}\right)$, for some $\varepsilon>0$ then, $T(n)$ is $\Theta\left(n^{\log _{b}(a)}\right)$
(C) if $f(n)$ is $\frac{n}{\log _{2}(n)}$, then $T(n)$ is $\Theta\left(\log _{2}(n)\right)$
(D) if $f(n)$ is $n \log _{2}(n)$, then, $T(n)$ is $\left.\Theta\left(n \log _{2} n\right)\right)$

Ans. (B)
Sol. If we take $\mathrm{a}=2, \mathrm{~b}=2$, on applying extended master theorem $\mathrm{A}, \mathrm{C}, \mathrm{D}$ are false hence option B is correct.
Question 19.

Let G be a connected undirected weighted graph consider the following to statements.
S_{1}. There exists a minimum edge weight in G which is present in every MST of G.
S_{2}. If every edge in G has distinct weights, then G has a unique MST.
Which of the following is true?
(A) S_{1} is true and S_{2} is false
(B) S_{1} is false and S_{2} is true
(C) Both S_{1} and II are true
(D) Both S_{1} and II are false

Ans. (B)
Sol. Given: G is a connected undirected weighted graph
By using Kruskal's algorithm to find MST, we sort the edges based on their weight and start selective edges from the smallest weight ($\mathrm{w} _$small for example).
Problem with S1: If we have multiple copies of $w _$small, then a specific w_{-}small weighted edge is not guaranteed to be selected by Kruskal.
S2 is Correct: If the sorted order of the edges contains only distinct values, the Kruskal algorithm will always select a unique set of edges resulting in an unique minimum spanning tree.
Question 20.

What is the worst case number of arithmetic operations performed by recursive binary search on a sorted array of size n ?
(A) $\Theta\left(n^{2}\right)$
(B) $\Theta\left(\log _{2} n\right)$
(C) $\Theta(\mathrm{n})$
(D) $\Theta(\sqrt{n})$

Ans. (B)
Sol. The worst case occurs when we are searching for a key that is smaller than the smallest element of the array or larger than the largest element of the array.
Question 21.
NAT (2M)
Question ID : 8232513152
Consider a Boolean function $f(w, x, y, z)$ such that
$f(w, 0,0, z)$
$f(1, x, 1, z)=x+2$
$f(w, 1, y, z)=w 2+y$
The number of literals in the minimal sum of products expression of f is \qquad .

Ans. 6
Sol.

w	x	y	z	f
0	0	0	0	1
0	0	1	0	1
0	0	1	1	x
0	0	1	1	x
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Therefore, 6 literal are possible

Question 22.
NAT (1M)
Question ID : 8232513118
If x and y are two decimal digits and $(0.1101)_{2}=(0.8 x y 5)_{10}$, the decimal value of $x+y$ is

Ans. 3

Sol.
$(0.1101)_{2}$

$$
\begin{aligned}
& =2^{-1}+2^{-2}+2^{-4} \\
& =0.0625+0.25+0.5
\end{aligned}
$$

$$
(0.8125)_{10}
$$

$$
x=1
$$

$$
y=2
$$

$$
x+y=3
$$

Question 23.

Suppose we want to design a synchronous circuit that processes a string of 0's and 1's. Given a string, it produces another string by replacing the first 1 in any subsequence of consecutive 1 's by a 0 . Consider the following example.
Input sequence: 00100011000011100
Output sequence: 00000001000001100
A Mealy Machine is a state machine where both the next state and the output are functions of the present state and the current input.
The above mentioned circuit can be designed as a two-state Mealy machine. The states in the Mealv machine can be represented using Boolean values 0 and 1 . We denote the current state, the next state, the next incoming bit, and the output bit of the Mealv machine by the variables s, t, b and y respectively. Assume the initial state of the Mealv machine is 0 .
What are the Boolean expressions corresponding to t and y in terms of s and b ?
(A)

$$
t=b
$$

$$
y=s \bar{b}
$$

(B)
$t=s+b$
$y=s b$
$t=b$
(C)
$y=s b$
(D)

$$
\begin{gathered}
t=s+b \\
y=s \bar{b}
\end{gathered}
$$

Ans. (C)
Sol.

Present State (s)	Next State (t)	$\mathrm{O} / \mathrm{P}(y)$
	$b=0$	$b=1$
0	0,0	1,0
1	0,0	1,1

$$
\begin{aligned}
& t=\overline{s b}+s b=b \\
& y=s b
\end{aligned}
$$

Question 24.

The format of the single-precision floating-point representation of a real number as per the IEEE 754 standard is as follows:

Which one of
\qquad
the following choices is correct with respect to the smallest normalized positive number represented using the standard?
(A) exponent $=00000000$ and mantissa $=00000000000000000000000$
(B) exponent $=00000001$ and mantissa $=00000000000000000000001$
(C) exponent $=00000001$ and mantissa $=00000000000000000000000$
(D) exponent $=00000000$ and mantissa $=00000000000000000000001$

Ans. (C)
Sol. For smallest positives number, the value of sign bit, exponent, and mantissa will be
Sign bit $S=0$
Exponent $E=1=0000001$
Mantissa $M=0=0.00$
Therefore, the number will be +1.0 to $2^{1-27}=2^{-126}$

Question 25.

MSQ (2M)
Question ID : 8232513144
If the numerical value of 2-byte unsigned integer on a little endian computer is 255 more than that on big endian computer, which of the following choice represent(s) the unsigned integer on a little endian
(A) 0×4243
(B) 0×6665
(C) 0×0001
(D) 0×0100

Ans. (B), (D)
Sol. (A) LE - 4243
$=49161^{\prime} 3+2^{*} 16^{\wedge} 2+4^{*} 16 \mathrm{~A} 1+3$
$=16963 \mathrm{BE}-4342=$ - $^{*} 16^{\wedge} 3+3^{\prime} 161^{\prime} 2+416^{\wedge} 1+2$
$=17218$ (incorrect)
(B) LE - $6665==6^{\prime} 161^{\prime} 3+6^{*} 16^{\wedge} 2+6^{*} 16^{\wedge} 1+5$
$=26213 \mathrm{BE}-6566-$
$=6^{*} 16^{\wedge} 3+5^{*} 16^{\wedge} 2+6^{*} 16^{\wedge} 1+6$
$=25958$ Difference
$=26213-25958=255$ (correct)
(C) LE - 0001-1 BE-0100-256 (larger hence incorrect)
(D) little endian
$=0100=16 " 2=256$
Big endian $=0001=1$,
difference $=256-1=255$ correct .
Question 26.

Consider the following multi-threaded code segment (in a mix of C and pseudo-code), invoked by two processes P1 and P2, and each of the processes spawns two threads T1 and T2:
int $\mathrm{x}=0$; // global
Lock L1; // global
main() \{
create a thread to execute foo(); // Thread T1
create a thread to execute foo(); // Thread T2
wait for the two threads to finish execution;
print (x);\}

```
foo() {
    int y = 0;
    Acquire L1;
    x = x + 1;
    y-y +1;
    Release L1;
    print (y);}
```

Which of the following statement(s) is/are correct?
(A) At least one of P1 and P2 will print the value of x as 4 .
(B) Both P 1 and P 2 will print the value of x as 2 .
(C) At least one of the threads will print the value of y as 2 .
(D) Both T 1 and T 2 , in both the processes, will print the value of y as 1 .

Ans. (B), (D)
Sol. Each process has its own address space.

1. P1:

Two threads $\mathrm{T}_{11}, \mathrm{~T}_{12}$ are created in main.
Both execute foo function and threads don't wait for each other. Due to explicit locking mechanism here mutual exclusion is there and hence no race condition inside foo(). y being thread local, both the threads will print the value of y as 1 .
Due to the wait in main, the print(x) will happen only after both the threads finish. So, x will have become 2.
PS: Even if x was not assigned 0 explicitly in C all global and static variables are initialized to 0 value.
2. P 2 :

PAGE

GATE 2021 [Afternoon Session]
19 Computer Science Engineering

GATE ACADEMY
stepes ta succest...
Same thing happens here as P1 as this is a different process. For sharing data among different processes mechanisms like shared memory, files, sockets etc must be used.
Question 27.
Question ID : 8232513105
Which one of the following circuits implements the Boolean function given below?

$$
f(x, y, z)=m_{0}+m_{1}+m_{3}+m_{4}+m_{5}+m_{6}, \text { where } m_{i} \text { is the } i^{\text {th }} \text { minterm }
$$

Ans. (B)
Sol. $\quad \sum m=(0,1,3,4,5,6)$

Hence, the correct option is (B)
Question 28.
Question ID : 8232513143

Consider a computer system with multiple shared resource types, with one instance per resource type. Each instance can be owned by only one process at a time. Owning and freeing of resources are done by holding a global lock (L). The following scheme is used to own a resource instance:
function OwnRESOURCE(Resource R)
Acquire lock L // a global lock
if R is available then
Acquire R
Release lock L
else
if R is owned by another process P then
Terminate P , after releasing all resources owned by P
Acquire R
Restart P
Release lock L
end if
end if
end function
Which of the following choice(s) about the above scheme is/are correct?
(A) The scheme ensures that deadlocks will not occur.
(B) The scheme violates the mutual exclusion property.
(C) The scheme may lead to live-lock.
(D) The scheme may lead to starvation.

Ans. (A), (C),(D)
Sol. Mutual exclusion is not violated.
Also, there will be no deadlock because of forceful preemption of resources.
This may lead to starvation if the process is keeps on coming and preempting each other like P1 is preempted by P2 and P2 is preempted by P3.
Live-lock is also possible due to continuous preemption of resources.
For option (c) consider two processes P1 and P2 now P1 enter the code acquires lock and resource.
Now P2 enters the else part kills P1 and acquire R and restart P1 Now P1 again acquire lock and kills the process P 2 this continues creating a live lock scenario but there is ambiguity in the code since "Release R" is not written anywhere so ambiguity is regarding how the process will release Resource R. According to the code, the only way to release the resource is by getting killed.

Question 29.

Which of the following statements is/are correct in the context of CPU scheduling?

GATE ACADEMY'
(A) Round Robin policy can be used even when the CPU time required by each of the processes is not known in apriori.
(B) Implementing preemptive scheduling needs hardware support.
(C) The goal is to only maximize CPU utilization and minimize throughput.
(D) Turnaround time includes waiting time.

Ans. (A), (B), (D)
Sol. Option A: Round Robin policy can be used even when the CPU time required by each of the processes is not known in apriori. This is True because Round Robin policy depends on time quantum.
Option B: Implementing preemptive scheduling needs hardware support. This is True because preemption needs interrupt to occur.
Option C: The goal is to only maximize CPU utilization and minimize throughput, this is False Option D: True, because turn around time $=\mathrm{WT}+\mathrm{BT}$
Question 30.
NAT (2M)
Question ID : 8232513153
Consider a pipelined processor with 5 stages, Instruction Fetch (IF), Instruction Decode (ID). Execute (EX), Memory Access (MEM), and Write Back (WB). Each stage of the pipeline, except the EX-stage, takes one cycle. Assume that the ID stage merely decodes the instruction and the register read is performed in the EX-stage. The EX-stage takes one cycle for ADD instruction and two cycles for MUL instruction. Ignore pipeline register latencies.
Consider the following sequence of 8 instructions:
ADD, MUL, ADD, MUL, ADD, MUL, ADD, MUL
Assume that every MUL instruction is data-dependent on the ADD instruction just before it and every ADD instruction (except the first ADD) is data-dependent on the MUL instruction just before it. The Speedup is defined as follows:

$$
\text { Speedup }=\frac{\text { Execution time without operand forwarding }}{\text { Execution time with operand forwarding }}
$$

The Speedup achieved in executing the given instruction sequence 011 the pipelined processor (rounded to 2 decimal places) is
Ans. $\quad 1.87$ to 1.88
Sol. Execution cycle without operand forwarding $=30$
Execution cycle with operand forwarding $=16$
Speed up $=30 / 16=1.875$
Question 31.
Question ID : 8232513120

Consider a computer system with DMA support. The DMA module is transferring one 8 -bit character in one CPU cycle from a device to memory through cycle stealing at regular intervals. Consider a 2 MHz processor. If 0.5% processor cycles are used for DMA, the data transfer rate of the device is bits per second.
Ans. 80000
Sol. CPU cycles stolen in DMA is = data transfer time/data preparation time

$$
\begin{aligned}
& \Rightarrow 0.5 \% \text { of processor cycles are used or stolen } \\
& \text { processor speed }=2 \mathrm{MHz} \\
& \Rightarrow \text { Cycle time }=1 / 2 \mathrm{MHz}=0.5 \mu \mathrm{~s} \\
& \Rightarrow \text { In one sec }=1 / 0.5^{*} 10^{-6} \\
& =2 \mathrm{MIPS}
\end{aligned}
$$

Time for One byte transfer $=\left(1 / 2 * 10^{6}\right)$
Let X is the device transfer rate
$\Rightarrow 0.5=$ data transfer time $/$ data preparation time
$\Rightarrow 0.5=\left(\left(1 / 2 * 10^{6}\right) /(1 / \mathrm{X})\right)^{*} 100$
$\Rightarrow 1$ MIPS (in bytes)
Device transfer rate is $8^{*} 10^{4}$ bit per second.
Question 32.

Consider a three-level page table to translate a 39 bits virtual address to a physical address
As shown below:

Level 1 offset	Level 2 offset	Level 3 offset	Page Offset
9 bits	9 bits	9 bits	12 bits

The page size is $4 \mathrm{~KB}\left(1 \mathrm{~KB}=2^{\wedge} 10\right.$ bytes) and page table entry size at every level is 8 bytes. A Process P is currently using 2GB ($1 \mathrm{~GB}=2^{\wedge} 30$ bytes) virtual memory which is mapped to 2 GB Of physical memory. The minimum amount of memory required for the page table of P across All level is \qquad KB.
Ans. 4108
Sol. Given :
Virtual address $(\mathrm{VA})=39$ bits
Page size $=4 \mathrm{~KB}$
Physical address $(\mathrm{PA})=2 \mathrm{~GB}$
Page table entry size $($ PTE $)=8$ B
Three level pages tables with address division $(9,9,9,12)$:
Three level pages tables with address division $(9,9,9,12)$ means :

9 most significant bits for indexing into the level-1(outer level), 9 bits for the level-2 index, 9 bits for the level-3 index, and again 12 bits for the offset within a page. The entries of the level-1 page table are pointers to a level-2 page table, the entries of the level-2 page table are pointers to a level-3 page table, and the entries of the level-3 page table are PTEs that contain actual frame number where our desired word resides.
9 bits for a level means 29 entries in one page table of that level.
For our process P :
P is using 2 GB of its VM. The rest of its VM is unused.
2 GB VM will have $2 \mathrm{~GB} / 4 \mathrm{~KB}=219$ Pages.
But level 3 page table has only 29 entries, so, one page table of level 3 can point to 29 pages of VM only, So, we need 210 level-3 page tables of process P .
So, at level-3, we have 210 page tables, So, we need 210 entries in Level-2 But level 2 page table has only 29 entries, so, one page table of level 2 can only point to 29 page tables of level-3, So, we need 2 level-2 page tables.
So, we need 1 Level-1 page table to point to level-2 page tables.
So, For process P, we need only 1 Level-1 page table, 2 level-2 page tables, and 210 level- 3 page tables.
Note that All the page tables, at every level, have same size which is $29 \times 8 \mathrm{~B}=212 \mathrm{~B}=4 \mathrm{~KB}$
(Because every page table at every level has 29 entries and Page table entry size at every level is 8 B) So, in total, we need $1+2+210$ page tables (1 Level-1, 2 Level-2, 210 level-3), and each page table size is 4 KB
So, total page tables size $=1027 \times 4 \mathrm{~KB}=4108 \mathrm{~KB}$
So, answer is 4108.

Question 33.

MCQ (2M)

Question ID : 8232513136
Consider the following two statements about regular languages:
S_{1} : For every infinite regular language there exists a subset of language which is undecidable.
S_{2} : Every finite language is regular.
Which of the following choices is correct?

(A) Both S_{1} and S_{2} are true
(B)Only S_{1} is true
(C) Only S_{2} is true
 믕 C C 2004
(D) Neither S_{1} nor S_{2} is true

Ans. (A)
Sol. S1:
Every infinite regular language contains an undecidable language as subset.
True
If we consider infinite regular language set as L. As per definition L has infinite many strings.

We know, $|L|<|P(L)|$, here $P(L)$ denote power set of language set, L by cantor theorem we know if L is infinite countable or infinite uncountable $P(L)$ power set of L is uncountable (Infinite) It's power set consist of decidable and some undecidable language both.

S2:
Every finite language is regular as we have finite number of strings for example $\left\{S_{1}, S_{2}, \ldots \ldots . . S_{n}\right\}$, where $n \in N$.

We can have regular expression always

$$
R=S_{1}+S_{2}+\ldots \ldots+S_{n}
$$

True

Question 34.

MSQ (2M)
Question ID : 8232513141
For a string w, we define w^{R} to be the reverse of w. If $w=01101$ the $w^{R}=10110$. Which of the following language is/are context-free?
(A) $\left\{w x w^{R} x^{R} \mid w, x \in\{0,1\}^{*}\right\}$
(B) $\left\{w x x^{R} w^{R} \mid w, x \in\{0,1\}^{*}\right\}$
(C) $\left\{w w^{R} x x^{R} \mid w, x \in\{0,1\}^{*}\right\}$
(D) $\left\{w x w^{R} \mid w, x \in\{0,1\}^{*}\right\}$

Ans. (B), (C), (D)
Sol. (A) $L=\left\{w x w^{R} x^{R} \mid w, x \in\{0.1\}^{*}\right\}$
This is not CFL as if we push w then x then we can't match w^{R} against w. similarly with x and x^{R}.
(B)

$$
\begin{aligned}
L= & \left\{w w^{R} x x^{R} \mid w, x \in\left\{0,14^{*}\right\}\right\} \\
& \vdots \bigsqcup
\end{aligned}
$$

This is CFL, particularly NCFL. We need to guess for middle of w here, and we can compare w with w^{R} and x with x^{R}.
(C)

$$
L=\left\{\begin{array}{c}
\left.w^{*} x^{R} w^{R} \mid w, x \in\left\{0,14^{*}\right\}\right\} \\
\hline
\end{array}\right.
$$

This is NCFL clearly.
(D) $L=\left\{w x w^{R} \mid w, x \in\left\{0,14^{*}\right\}\right\}$

Take $w=\varepsilon$ then $w^{R}=\varepsilon$
x can be expanded to $(0+1)^{*}$
It is clearly regular
$\mathrm{B}, \mathrm{C}, \mathrm{D}$ are CFL language.
Question 35.

6 ATE
Question ID : 8232513109
Let $L \subseteq\{0,1\}^{*}$ be an arbitrary regular language accepted by a minimal DFA with k states. Which one of the following languages must necessarily be accepted by a minimal DFA with k states?
(A) $L \cdot L$
(B) $L \cup\{01\}$
(C) $\{0,1\} *-L$
(D) $L-\{01\}$

Ans. (C)
Sol. Number of states in minimal DFA is same for language as well as it's complement
L and \bar{L} has same number of states
$\bar{L}=\left\{0,14^{*}-L\right\}$
Question 36.
NAT (1M)
Question ID : 8232513117
Consider the following DFA deterministic finite automaton

The number of strings of length 8 accepted by the above automation is \qquad .
Ans. 256
Sol. Given:

On observing clearly, it is accepting every string of length 8 .
$2^{8}=256$ string

Question 37.
MSQ (1M)
Question ID : 8232513112
Let L_{1} be a regular language and L_{2} be a context-free language. Which of the following languages is/are context-free?
(A) $\left(L_{1} \cap L_{2}\right) \cup\left(\bar{L}_{1} \cap L_{2}\right)$
(B) $L_{1} \cap \bar{L}_{2}$
(C) $\overline{\bar{L}_{1} \cup \bar{L}_{2}}$
(D) $L_{1} \cup\left(L_{2} \cup \bar{L}_{2}\right)$

Ans. (A), (C), (D)
Sol. $\quad L_{1}$ regular language
L_{2} context free language
(A) $\left(L_{1} \cap L_{2}\right) \cup\left(\overline{L_{1}} \cap L_{2}\right)$

Regular is closed under complementation.
Any CFL union with regular is CFL.
Any CFL intersection with regular is CFL.
A. $\left(L_{1} \cap L_{2}\right) \cup\left(\overline{L_{1}} \cap L_{2}\right)$
(Regular $\cap(F L) \cup L \overline{\text { Regular }} \cap(F L)$
CFL
B. $L_{1} \cap \overline{L_{2}}$

Regular $\cap \overline{C F L}$
$\overline{C F L}$ may not be CFL
C. $\overline{\bar{L}_{1} \cup \bar{L}_{2}}$
$\overline{\bar{L}_{1}} \cap \overline{\bar{L}_{2}}$
$L_{1} \cap L_{2}$

Regular \cap CFL $=$ CFL
D. $L_{1} \cup\left(L_{2} \cup \bar{L}_{2}\right)$
$L_{2} \cup \bar{L}_{2}=\Sigma^{*}$
$L_{1} \cup \Sigma^{*}=\Sigma^{*}$
Regular hence CFL
Question 38.

Which of the following regular expressions is the set of all binary numbers is divisible by 3 . Assume that the string epsilon is also divisible by 3 .
(A) $(0 *(1(01 * 0) * 1) *) *$
(B) $(0+11+10(1+00) * 01)$ *
(C) $(0+1(01 * 0) * 1) *$
(D) $(0+11+11(1+00) * 00)$

Ans. (A), (B), (C)
Sol. A, B, C are correct
In option D
$\left(0+11+11(1+00)^{*} 00\right)$
11100 generated by D but not
43210
Divisible by 3 .
Question 39.

MCQ (2M)
Question ID : 8232513138

For a statement S in a program, in the context of liveness analysis, the following sets are defined:
USE(S): the set of variables used in S
IN (S): the set of variables that are live at the entry of S
OUT(S): the set of variables that are live at the exit of S
Consider a basic block that consists of two statements. S_{1} followed by S_{2}.
Which one of the following statements is correct?

Which of the following is true?
(A) Out (S1) = In (S2) U Use (S2)
(B) Out (S1) = In (S2) n Use (S2)
(C) Out (S1) $=\operatorname{In}(\mathrm{S} 2)$
(D) $\operatorname{Out}(\mathrm{S} 1)=\ln (\mathrm{S} 1) \mathrm{U} \operatorname{Use}(\mathrm{S} 1)$

Ans. (C)
Sol. Formula for in and out are

For basic block B other than exit,
$\operatorname{IN}[B]=$ use $B \cup[\operatorname{out}(B)]-\operatorname{def}(B)$
Out $[\mathrm{B}]=U_{S}$ successor of B IN $[\mathrm{B}]$
Out $(S 1)=\mathrm{IN}(S 2)$

Question 40.

NAT (2M)
Question ID : 8232513151
Consider the following augmented grammar with $\{\#, @,<,>, a, b, c\}$ as the set of terminals

$$
\begin{aligned}
& S \longrightarrow S \\
& S \longrightarrow S \# c S \\
& S \longrightarrow S S \\
& S \longrightarrow S @ \\
& S \longrightarrow<S> \\
& S \longrightarrow a \\
& S \longrightarrow b \\
& S \longrightarrow c
\end{aligned}
$$

Let $I_{0}=\operatorname{CLOSURE}\left(\left\{S^{\prime} \rightarrow \cdot S\right\}\right)$. The number of items in the set GOTO (GOTO $\left.\left(I_{0},<\right),<\right)$ is \qquad .

Ans. 8
Sol.

Number of items in the set GO TO (GOTO (IO, <), <) is 8
Question 41.
MCQ (1M)
Question ID : 8232513103
Consider the following ANSI C program:
int main () \{
Integer x ;
Return 0;
\}
which one of the following phases in a 7 - phase C compiler will throw an error?
(A) Lexical analyzer
(B) Semantic analyzer
(C) Machine dependent optimizer
(D) Syntax analyzer

Ans. (C)
Sol. It is syntax error. As per ANSI C integer is not keyword for declaration of integer.
We have int.
Question 42.
MSQ (1M)
Question ID : 8232513113
In the context of compilers, which of the following is/are NOT an intermediate representation of the source program?
(A) 3 Address code
(B) Symbol Table
(C) Control Flow Graph
(D) Abstract Syntax Tree

Ans. (B)
Sol. Symbol table is data structure used to store information related to variables, function name etc.
Question 43.
MCQ (2M)
Question ID : 8232513130
Consider the following ANSI C code segment:

Assume that the variable y points to a struct (allocated on the heap) containing two fields fl and f 2 . and the local variables x. y. z, p. q. and i are allotted registers. Common sub-expression elimination (CSE) optimization is applied on the code. The number of addition and dereference operations (of the form $y->f 1$ or $y->f 2$) in the optimized code, respectively, are:
(A) 303 and 2
(B) 203 and 2
(C) 403 and 102
(D) 303 and 102

Ans. (A)
Sol. In compiler theory, common subexpression elimination is a compiler optimization that searches for instances for identical expressions (i.e, they all evaluate to the same value), and analyzes whether it is worthwhile replacing them with a single variable holding the computed value.
For example: Consider the following block of code

$$
\begin{aligned}
& \mathrm{a}=\mathrm{x}+\mathrm{y}+\mathrm{z} ; \\
& \mathrm{r}=\mathrm{p}+\mathrm{q} ; \\
& \mathrm{b}=\mathrm{x}+\mathrm{y}+\mathrm{r} ;
\end{aligned}
$$

The code after common subexpression elimination.

$$
\begin{aligned}
& t=x+y ; \\
& a=t+z ; \\
& r=p+q ; \\
& b=t+r ;
\end{aligned}
$$

In the given code $\mathrm{z}=\mathrm{x}+3+\mathrm{y}->\mathrm{f} 1+\mathrm{y}->\mathrm{f} 2$;

$\mathrm{X}+3$ is common subexpression, also y -> f1 \& y -> f2 is found in first line itself so they are also like common subexpression. Hence the code after common subexpression

$$
\begin{aligned}
& \mathrm{t} 1=\mathrm{x}+3 ; \\
& \mathrm{t} 2=\mathrm{y}->\mathrm{f} 1 ; \\
& \mathrm{t} 3=\mathrm{y}-\mathrm{f} 2 \\
& \mathrm{z}=\mathrm{t} 1+\mathrm{t} 2+\mathrm{t} 3 ;
\end{aligned}
$$

```
for \((\mathrm{i}=0 ; \mathrm{i}<200 ; \mathrm{i}=\mathrm{i}+2)\{\)
    if ( \(\mathrm{z}>\mathrm{i}\) ) \{
        \(\mathrm{p}=\mathrm{p}+\mathrm{tl} ;\)
        \(q=q+t 2 ;\)
\}
else \(\{\)
        \(\mathrm{p}=\mathrm{p}+\mathrm{t} 3 ;\)
        \(\mathrm{q}=\mathrm{q}+\mathrm{t} 1 ;\)
    \}
\}
```

Hence two dereference operations (of the form y->f1 or y->f2) in the optimized code. The number of additions in the optimized code are: Loop will execute for 100 times and in loop one addition (i+2) So 100 additions. Inside loop we have two additions (either in if block or in else block) so 200 additions inside loop.
Hence 300 additions in loop (loop body as well as inside)
First 2 lines contains 3 additions

$$
\begin{aligned}
& \mathrm{t} 1=\mathrm{x}+3 \\
& \mathrm{z}=\mathrm{t} 1+\mathrm{t} 2+\mathrm{t} 3
\end{aligned}
$$

Hence total 303 additions. So 303 and 2 are the answer.

Question 44.

Assume a two-level inclusive cache hierarchy, L1 and L2, where L2 is the larger of the two. Consider the following statements.
S_{1} : Read misses in a write through L1 cache do not result in writebacks of dirty lines to the L2.
S_{2} : Write allocate policy must be used in conjunction with write through caches and no-write allocate policy is used with writeback caches.
Which of the following statements is correct?
(A) S_{1} is true and S_{2} is true
(B) S_{1} is false and S_{2} is false
(C) S_{1} is true and S_{2} is false
(D) S_{1} is false and S_{2} is true

Ans. (C)
Sol. A cache with a write through policy (and write allocate) reads on entire block (cache line) from memory on a cache miss and writes only the updated item to memory for a store.

Evictions do not need to write to memory.
A cache with a write back policy (and write allocate) reads an entire block (cache line) from memory on a cache miss, and may need to write a dirty cache line first. Any writes to memory need to be entire cache lines since there is no way to distinguish which word was dirty with only a single dirty bit. Evictions of a dirty cache line cause a write to memory
S2: false
Write allocate policy is also used with write back cache.
Question 45.

Consider the following statements S1 and S2 about the relational data model:
S_{1} : A relation cannot have more than one foreign key.
S_{2} : A foreign key in a relation scheme R cannot be used to refer the tuples of R.
Which one of the following choices is/are true?
(A) S_{1} is true S_{2} is false
(B) S_{2} is true S_{1} is true
(C) Both S_{1} and S_{2} are true
(D) Both S_{1} and S_{2} are false

Ans. (D)
Sol. A relation may have multiple foreign keys, and each foreign key can have a different parent table. Therefore, the statement I is incorrect. This statement is also incorrect because a self-referential relationship refers to its own attributes.

Question 46.

Question ID : 8232513121
A data file consisting of $1,50,000$ students' records is stored on a hard disk with block size of 4096 bytes. The data file is sorted on the primary key RollNo. The size of a record pointer for this disk is 7 bytes. Each student-record has a candidate key attribute called ANum of size 12 bytes. Suppose an index file with records consisting of two fields. ANum value and the record pointer to the corresponding student record, is built and stored on the same disk. Assume that the records of data file and index file are not split across disk blocks. The number of blocks in the index file is \qquad
Ans. 698 Blocks
Sol. Given the total records $=1,50,000$
Block size $=4096$ bytes
Key size $=12$ bytes
Record pointer size $=7$ bytes
For a dense index, the number of indexes per block $=$ floor $(4096 /(12+7))=215$
Therefore, the total number of blocks $=$ cell $(1,50,000 / 215)=698$ blocks

Let S be the following schedule of operation of three transactions T_{1}, T_{2} and T_{3} in a relational database system:

$$
S: R_{2}(y), R_{1}(x), R_{3}(z), R_{1}(y), W_{1}(x), R_{2}(z), W_{2}(y), R_{3}(x), W_{3}(z)
$$

P. S is conflict serializable.

Q . It T_{3} commits before T_{l} finishes, then schedule S is recoverable.
Which of the following is true ?
(A) Both P and Q are true
(B) P is true and Q is false
(C) Both P and Q are false
(D) P is false and Q is true

Ans. (B)
Sol.
i. The given schedule is a conflict serializable and the precedence graph for the given schedule is

ii.This statement is false. For the given condition it is irrecoverable. For this to be recoverable, the transaction T1 should have committed before T3 does.

Question 48.

Suppose the following functional dependencies hold on a relation U with attributes $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$, and T

$$
P \rightarrow Q R
$$

Which of the following functional dependencies can be inferred from the above functional dependencies?
(A) $P S \rightarrow Q$
(B) $\quad P \rightarrow R$
(C) $R \rightarrow T$
(D) $\quad P S \rightarrow T$

Ans. (A), (B), (D)
Sol. For the given F'Ds, the closure of the attributes will be

$$
\begin{aligned}
& P+=\{P, Q, R\} \\
& R S+=\{R, S, T\}
\end{aligned}
$$

$P S+=\{P, S, Q, R, T\}$
$R+=\{R\}$
Based on these, the FD's
$P S->T$
$P->R$
$P S->Q$
Holds for the given relation

Question 49.
MCQ (2M)
Question ID : 8232513131
The relation scheme given below is used to store information about the employees of a company, where empId is the key and deptId indicates the department to which the employee is assigned. Each employee is assigned to exactly one department. emp(empId, name, gender, salary, deptId)

Consider the following SQL Query:
select deptId, count (*)
from emp
where gender $=$ "female" and salary $>$ (select avg (salary) from emp)
group by deptId;
The above query gives, for each department in the company, the number of female employees whose salary is greater than the average salary of
(A) Employees in the department
(B) Female employees in the department
(C) Employees in the company
(D) Female employees in the company

Ans. (B)
Sol. The given query will return the department id and the count of female employees in each department whose salary is greater than the average salary of any employee.
Here, the inner query will return the average salary of the employees. The group by clause will group the tuples based on dept id, count $(*)$ will give us the count of tuples in each department where gender $=$ female and the salary $>$ average salary of any employee.

Question 50.
MSQ (2M)
Question ID : 8232513145
Consider a computer network using the distance vector routing algorithm in its network layer.
The partial topology of the network is as shown below.

The objective is to find the shortest-cost path from the router R to routers P and Q . Assume that R does not initially know the shortest routes to P and Q . Assume that R has three neighbouring routers denoted as X, Y. and Z. During one iteration, R measures its distance to its neighbours X, Y, and Z as 3, 2, and 5, respectively. Router R gets routing vectors from its neighbours that indicate that the distance to router P from routers X, Y, and Z are 7,6 , and 5 , respectively. The routing vector also indicates that the distance to router Q from routers X . Y , and Z are 4,6 , and 8 respectively. Which of the following statement(s) is/are correct with respect to the new routing table of R , after updation during this iteration?
(A) The distance from R to P will be stored as 10
(B) The next hop router for a packet from R to P is Y
(C) The distance from R to Q will be stored as 7
(D) The next hop router for a packet from R to Q is Z

Ans. (B), (C)
Sol. Frame size $(L)=1000$ bits
Data rate $(R)=1 \mathrm{Mbps}$

$$
t_{f}=\frac{L}{R}=\frac{10^{3} \mathrm{bits}}{10^{6} \mathrm{bits} / \mathrm{sec}}=1 \mathrm{~ms}
$$

Total no. of frames transmitted per sec $=1000$

$$
\because t_{f}=1 \mathrm{~ms}
$$

So $\quad G=1$
Throughput $=G \times e^{-G}$

$$
\begin{aligned}
& =e^{-1} \\
& =0.367
\end{aligned}
$$

Note : $G=$ no. of frames transmitted per frames to transmission time.
Question 51.
MCQ (2M)
Question ID : 8232513134
Consider the cyclic redundancy check (CRC) based error detecting scheme having the generator polynomial $X^{3}+X+1$. Suppose the message $m_{4} m_{3} m_{2} m_{1} m_{0}=1100$ is to be transmitted. Check bits
$c_{2} c_{1} c_{0}$ are appended at end of the message by the transmitter using the above CRC scheme. The transmitted bit string is denoted by $m_{4} m_{3} m_{2} m_{1} m_{0} c_{2} c_{1} c_{0}$. The value of the check bit sequence $c_{2} c_{1} c_{0}$ is
(A) 111
(B) 110 (C)
101 (D)
100

Ans. D
Sol. Generator: $\mathrm{X}^{3}+\mathrm{X}+1=>1011$
Data: 11000

1011|11000000

$$
\left.\begin{array}{lll}
1011 & & \\
& 1110 & \\
& 1011 \\
& & 1010 \\
& & \\
& & \\
& & \\
0 & 1011
\end{array}\right)
$$

Question 52.
MCQ (1M)
Question ID : 8232513107
Consider the three-way handshake mechanism followed during TCP connection establishment between hosts P and Q . Let X and Y be two random 32-bit starting sequence numbers chosen by P and Q respectively. Suppose P sends a TCP connection request message to Q with a TCP segment having SYN bit $=1$, SEQ number $=\mathrm{X}$, and ACK bit $=0$. Suppose Q accepts the connection request message to
(A) SYN bit $=1$, SEQ NO $=\mathrm{X}+1$, ACK bit $=0$, ACK No $=\mathrm{Y}$, FIN bit $=0$
(B) SYN bit $=1$, $\mathrm{SEQ} \mathrm{NO}=\mathrm{Y}, \mathrm{ACK}$ bit $=1$, ACK No $=\mathrm{X}$, FIN bit $=0$
(C) SYN bit $=1$, SEQ NO $=\mathrm{Y}$, ACK bit $=1$, ACK No $=\mathrm{X}+1$, FIN bit $=0$
(D) SYN bit $=0, \mathrm{SEQ} \mathrm{NO}=\mathrm{X}+1, \mathrm{ACK}$ bit $=0, \mathrm{ACK}$ No $=\mathrm{Y}$, FIN bit $=1$

Ans. (C)
Sol. $\quad \mathrm{SYN}=1$ as Q also will establish a connection
SEQ Num $=\mathrm{Y}$, representing if it wants to send data, its starting from Y sequence number
ACK bit $=1$, as now it is acknowledging the sender for connection request
ACK No $=\mathrm{X}+1$, the data it is expecting will now start from sequence number $\mathrm{X}+1$, as 1 bit has already been consumed by the $S Y N$ request
FIN $=0$, because it is establishing the connection to terminating.

Question 53.

Question ID : 8232513154

Consider a network using pure aloha where frame length $=1000$ bits, transmission rate $=1 \mathrm{Mbps}$. The average number of transmissions across all nodes modeled as a Poisson process with a rate 1000 frames $/ \mathrm{sec}$. Throughput is an average number of transmissions per seconds then the throughput is ?

Ans. $\mathbf{1 3 0}$ to 140

Sol. Frame size $(L)=1000$ bits
Data rate $(R)=1 \mathrm{Mbps}$

$$
t_{f}=\frac{L}{R}=\frac{10^{3} \mathrm{bits}}{10^{6} \mathrm{bits} / \mathrm{sec}}=1 \mathrm{~ms}
$$

Total no. of frames transmitted per sec $=1000$

$$
\because t_{f}=1 \mathrm{~ms}
$$

So $\quad G=1$
Throughput $=G \times e^{-2 G}$

$$
\begin{aligned}
& =e^{-2} \\
& =0.1353
\end{aligned}
$$

For 1000 frames
Throughput $=1000 \times 0.1353=135$
Note : $G=$ no. of frames transmitted per frames to transmission time.
Question 54.
NAT (1M)
Question ID : 8232513122
For a given biased coin, the probability that the outcome of a toss is head is 0.4 . This coin is tossed 1000 times. Let X denotes the random variable whose value is the number of times that head appeared in those 1000 tosses. The standard deviation of X (rounded to 2 decimal points) is \qquad
Ans. 15.0 to 16.0
Sol. Given : Probability of head, $p=0.4$
Probability of tail, $q=1-p=0.6$
Coin is tossed 1000 times, $n=1000$
Let X is a random variable whose value is number of times head appeared in those 1000 tosses
We know that, for binomial distribution
mean $=n p$
variance $=n p q$
Where $q=1-p$
So, standard deviation, $\sigma=\sqrt{n p q}$

$$
\sigma=\sqrt{1000 \times 0.4 \times 0.6}=\sqrt{240}=15.49
$$

Hence, the correct answer is 15.49 .
Question 55.
NAT (1M)
Question ID : 8232513125
Suppose that $f: R \rightarrow R$ is a continuous function on the interval $[-3,3]$ and a differentiable function in the interval $(-3,3)$ such that for every x in the interval, $f(x) \leq 2$. If $f(-3)=7$ then $f(3)$ is at most \qquad
Ans. 19
Sol. Given: The function f is continuous on interval $[-3,3]$ and differentiable in interval $(-3,3)$ and $f^{\prime}(x) \leq 2$.

By using Lagrange's mean value theorem,

$$
f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}
$$

Here, $a=-3$ and $b=3$
So, $f^{\prime}(x)=\frac{f(3)-f(-3)}{3-(-3)}$
As, $f^{\prime}(x) \leq 2$ is given

$$
\begin{aligned}
& 2 \geq \frac{f(3)-7}{3+3} \\
& 2 \times 6 \geq f(3)-7 \\
& f(3) \leq 12+7 \\
& f(3) \leq 19
\end{aligned}
$$

Hence, the correct answer is 19 .

Question 56.

Suppose that P is a 4×5 matrix such that every solution of the equation $P_{x}=0$ is a scalar multiple of [25431] ${ }^{T}$. The rank of P is \qquad
Ans. 4
Sol. Given:- P is 4×5 matrix
No. of Rows $=4$
No of columns $=5$
So , no of variable $=$ No of columns $=5$
Since, Px is a homogeneous.
And no of variables greater than Raw

Question ID : 8232513133
A bag has r red balls and b black balls. All balls are identical except for their colours. In a trial, a ball is randomly drawn from the bag, its colour is noted and the ball is placed back into the bag along with another ball of the same colour. Note that the number of balls in the bag will increase by one, after the trial. A sequence of four such trials is conducted. Which one of the following choices gives the probability of drawing a red ball in the fourth trial?
(A) $\left(\frac{r}{r+b}\right)\left(\frac{r+1}{r+b+1}\right)\left(\frac{r+2}{r+b+2}\right)\left(\frac{r+3}{r+b+3}\right)$
(B) $\frac{r+3}{r+b+3}$
(C) $\frac{r}{r+b+3}$
(D) $\frac{r}{r+b}$

Ans. (D)
Sol. There are 10 favorable ways to calculate the probability of red ball in $4^{\text {th }}$ trial $(R B R) R=R(B R R) R=1$ way

Or $(R R R)=3$ ways or $(B B B) R=3$ ways

$$
\begin{align*}
& P(R R R R)=\frac{r}{r+b} \times \frac{r+1}{r+1+b} \times \frac{r+2}{r+2+b} \times \frac{+2}{r+3+b} \tag{i}\\
& P(B B B R)=\frac{b}{r+b} \times \frac{b+1}{r+b+1} \times \frac{b+2}{r+b+2} \times \frac{r}{r+b+3} \tag{ii}
\end{align*}
$$

$$
\begin{aligned}
P(R R B R)= & \frac{3!}{2!}
\end{aligned} \times \frac{r}{r+b} \times \frac{r+1}{r+b+1} \times \frac{b}{r+b+2}
$$

$$
\begin{gather*}
P(\text { BBRR })=\frac{3!}{2!} \times \frac{b}{r+b} \times \frac{b+1}{r+b+1} \times \frac{r}{r+b+2} \tag{iii}\\
\times \frac{r+1}{r+b+3} \tag{iv}
\end{gather*}
$$

Required probability $=(\mathrm{i})+(\mathrm{ii})+($ iii $)+($ iv $)$

$$
\begin{aligned}
& r(r+1)(r+2)(r+3)+b(b+1)(b+2) \\
= & \frac{r+3 r(r+1) b(r+2)+3 b(b+1) r(r+1)}{(r+b)(r+b+1)(r+b+2)(r+b+3)}
\end{aligned}
$$

On solving it we get,

$$
=\frac{r(r+1+b)}{(r+b)(r+b+1)}=\frac{r}{r+b}
$$

Hence, the correct option is (A).

Question 58.

In an examination, a student can choose the order in which two questions (QuesA and QuesB) must be attempted.
-If the first question is answered wrong, the student gets zero marks.
-If the first question is answered correctly and the second question is not answered correctly, the student gets the marks only for the first question.
-If both the questions are answered correctly, the student gets the sum of the marks of the two questions.

The following table shows the probability of correctly answering a question and the marks of the question respectively.

question	probability of answering correctly	marks
QuesA	0.8	10
QuesB	0.5	20

Assuming that the student always wants to maximize her expected marks in the examination, in which order should she attempt the questions and what is the expected marks for that order (assume that the questions are independent)?
(A)First QuesA and then QuesB. Expected marks 14.
(B)First QuesB and then QuesA. Expected marks 22.
(C)First QuesB and then QuesA. Expected marks 14.
(D)First QuesA and then QuesB. Expected marks 16.

Ans. (D)
Sol. Let X be random variable which represents total marks record.
$P(x)$ be probability of getting those marks
P (answering Ques A correctly) $=0.8$
$P($ answering Ques B correctly $)=0.5$

X	0	10	20	30
$P(x)$	0.2×0.5 $=0.1$	0.8×0.5 $=0.4$	0.5×0.2 $=0.1$	0.8×0.5 $=0.4$
$\sum P(x)=1$				

Case I, if Question A is attempted first and it is correct.

$$
\begin{aligned}
& E(x)=\Sigma(x) P(x) \\
& E(x)=0.4 \times 10+0.4 \times 30 \\
& E(x)=4+12=16
\end{aligned}
$$

Case II, If Question B is attempted first and is correct.

$$
\begin{aligned}
& E(x)=\Sigma(x) P(x) \\
& E(x)=0.1(20)+0.4(30) \\
& E(x)=2+12=14
\end{aligned}
$$

So, Case I is giving maximum expected marks.
Hence, the correct option is (D).
Question 59.
Question ID : 8232513111
Consider the following sets, where $\mathrm{n} \geq 2$
S1: Set of all $n \times n$ matrices with entries from the set $\{a, b, c\}$
S2: Set of all functions from the set $\left\{0,1,2, \ldots, n^{2}-1\right\}$ to the set $\{0,1,2\}$
Which of the following is possible?
(A) There does not exist an injection from S 1 to S 2 .
(B) There exists a surjection from S1 to S2.
(C) There does not exist a bijection from S1 to S2.
(D) There exists a bijection from S 1 to S 2 .

Ans. (B), (D)
Sol. S1: For $\mathrm{n} \times \mathrm{n}$ matrices n^{2} entries will be there, for each entry we are having 3 choices, one of a, b and c. therefore total possible ways matrix can be built is $3^{n^{n} 2}$, i.e., $3^{n^{\wedge 2}}$ elements in Set 1

S2: Set A consists element from 0 to $n^{2}-1$, in totality n^{2} elements are there, in Set B only 3 elements are there namely $0,1,2$. Therefore total number of functions possible from Set A to Set B are $3^{n^{\wedge} 2}$. i.e., $3^{\text {n }} 2$ elements in Set 2

Therefore, both Bijection and Surjection may exist from Set1 to Set 2 as both are having same number of elements.

Question 60.

Question ID: 8232513137

For two n-dimensional real vectors P and Q . the operation $\mathrm{s}(P, Q)$ is defined as follows:

$$
s(P, Q)=\sum_{i=1}^{n}(P[i] \cdot Q[i])
$$

Let $£$ be a set of 10 -dimensional non-zero real vectors such that for every pair of distinct vectors P, \in $£, \mathrm{~s}(P, Q)=0$. What is the maximum cardinality possible for the set $£$?
(A) 10
(B) 11
(C) 9
(D) 100

Ans. (A)
Sol. Given:

$$
s(P, Q)=\sum_{i=1}^{n}(P[i] \cdot Q[i])
$$

$S(P, Q)$ is nothing but the dot product of two vectors.
The dot product of two vectors is zero when they are perpendicular, as we are dealing with 10 dimensional vectors the maximum number of mutually-perpendicular vectors can be 10 .
Therefore, the maximum cardinality possible for the set $£$.
Question 61.
Question ID: 8232513115
Choose the correct choice(s) regarding the following propositional logic assertion S :

$$
\mathrm{S}:\left(\left(\mathrm{P}^{\wedge} \mathrm{Q}\right) \rightarrow \mathrm{R}\right)\left(\left(\mathrm{P}^{\wedge} \mathrm{Q}\right) \rightarrow 4(\mathrm{Q} \rightarrow \mathrm{R})\right)
$$

(A) S is a contradiction
(B) S is a tautology
(C) The antecedent of S is equal to consequent of S (doubtful)
(D) Neither tautology nor contradiction

Ans. (B), (C)
Sol. Antecedent (X): $(\mathrm{PQ})^{\prime}+\mathrm{R}=\mathrm{P}^{\prime}+\mathrm{Q}^{\prime}+\mathrm{R}$ \qquad 1
Consequent $(\mathrm{Y}):\left((\mathrm{PQ})^{\prime}+\left(\mathrm{Q}^{\prime}+\mathrm{R}\right)\right)==>\left(\mathrm{P}^{\prime}+\mathrm{Q}^{\prime}\right)+\mathrm{Q}^{\prime}+\mathrm{R}==>\mathrm{P}^{\prime}+\mathrm{Q}^{\prime}+\mathrm{Q}^{\prime}+\mathrm{R}==\mathrm{P}^{\prime}+\mathrm{Q}^{\prime}+\mathrm{R}-$ ------2

Because Antecedent and Consequent are returning same expression, therefore $\mathrm{X} \rightarrow \mathrm{Y}$, will be Tautology because X and Y are coming out to be same. For example

$$
\mathrm{A} \rightarrow \mathrm{~A}==>\mathrm{A}^{\prime}+\mathrm{A}==>1
$$

Question 62.
NAT (2M)
Question ID: 8232513150

Let S be a set consisting of 10 elements. The of tuples of the form (A, B) such that A and B are subsets of S , and $A \subseteq B$ is \qquad
Ans. 59049
Sol. As B is subset of S, B set can have any number of elements from set S, and for each type of B subset, further A can have any number of elements from B, therefore All the possibilities can be summarised below: -

Number of Elements in B	Number of elements in A
No element	No Element
$1 \Rightarrow{ }^{10} C_{1}$	${ }^{1} C_{0}+{ }^{1} C_{1}=2$
$2 \Rightarrow{ }^{10} C_{2}$	${ }^{2} C_{0}+{ }^{2} C_{1}+{ }^{2} C_{2}=2^{2}$
\cdot	\cdot
\cdot	\cdot
\cdot	\cdot
$10 \Rightarrow{ }^{10} \mathrm{C} 10$	${ }^{10} C_{0}+{ }^{10} C_{1} X(2)+{ }^{10} C_{2} X\left(2^{2}\right)+---+{ }^{10} C_{10} X\left(2^{10}\right)$

Overall number of tuples will be:

$$
{ }^{10} C_{0}+{ }^{10} C_{1} X(2)+{ }^{10} C_{2} X\left(2^{2}\right)+---+{ }^{10} C_{10} X\left(2^{10}\right)
$$

From binomial theorem, it is coming out to be $3^{10}=59049$

Question 63.

In a directed acyclic graph with a source vertex s, the quality-score of a directed path is defined to be the product of the weights of the edges on the path. Further, for a vertex v other than s. the quality-score of v is defined to be the maximum among the quality-scores of all the paths from s to v. The quality-score of s is assumed to be 1 .

The sum of the quality-score of all the vertices in the graph shown above is \qquad
Ans. 929

Sol. $\mathrm{s} \rightarrow \mathrm{s}=1$
$\mathrm{s} \rightarrow \mathrm{a}=9$
$\mathrm{s} \rightarrow \mathrm{b}=9$
$\mathrm{s} \rightarrow \mathrm{c}=1$
$\mathrm{s} \rightarrow \mathrm{d}=9$
$\mathrm{s} \rightarrow \mathrm{e}=81$
$\mathrm{s} \rightarrow \mathrm{f}=9$
$\mathrm{s} \rightarrow \mathrm{g}=81$
$\mathrm{s} \rightarrow \mathrm{t}=729$
Sum $=929$
Question 64.

Consider the following directed graph:

Which of the following is/are correct about the graph?
(A) A depth first traversal starting at vertex S classifies three directed edges as back edges.
(B) The graph does not have strongly connected components.
(C) For each pair of vertices u and v, there is a directed path from u to v.
(D) The graph does not have a topological order.

Ans. (A), (D)
Sol. Given:

We can observe that,
A) There are only 3 back edges, if started from S .
B) The graph does have a strongly connected component, it has cycle.
C) Not all rectangular/square components form a cycle.
D) The graph does not have a topological order, because there's a cycle in the bottom left corner of the graph

Question 65.
NAT (1M)
Question ID : 8232513119
Consider a set-associative cache of size $2 \mathrm{~KB}\left(1 \mathrm{~KB}=2^{10}\right.$ bytes) with the cache block size of 64 bytes. Assume that the cache is byte addressable and a 32-bit address is used for accessing the cache. If the width of tag field is 22 bits, the associativity of the cache is \qquad .
Ans. 2
Sol. Number of cache lines $=2 \mathrm{~KB} / 64 \mathrm{~B}=32$
Set Index bits are $32-(22+6)=4 \Rightarrow 16$ sets are there in the cache
\Rightarrow Bits of the cache line Index $=5 \Rightarrow 32$ cache lines
$\Rightarrow 32 / 2=16$ set. We will have 2-way set associative memory

TAG	Set Index	Offset
22	4	6
32 - bits		

