General Aptitude

Q. 1 to Q. 5 Carry One Mark Each.

Question 1

Writing too many things on the \qquad while teaching could make the students get \qquad .
(A) bored / board
(B) board / bored
(C) board / board
(D) bored / bored

Ans. (B)
Sol. Writing too many things on the board while teaching could make the students get bored.
Hence, the correct option is (B).

Question 2

Which one of the following is a representation (not to scale and in bold) of all values of x satisfying the inequality $2-5 x \leq-\frac{6 x-5}{3}$ on the real number line?
(A)

(B)

Ans. (C)
Sol.

$$
\begin{aligned}
& 2-5 x \leq-\frac{6 x-5}{3} \\
& =3(2-5 x) \leq-(6 x-5) \\
& =6-15 x \leq-6 x+5 \\
& =1 \leq 9 x \\
& x \geq \frac{1}{9}
\end{aligned}
$$

Hence, the correct option is (C).

Question 3

If $(x)=2 \ln \left(\sqrt{e^{x}}\right)$, what is the area bounded by $f(x)$ for the interval $[0,2]$ on the x-axis?
(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) 4

Ans. (C)
Sol.
Sol. Given : Function,

$$
f(x)=2 \ln \left(\sqrt{e^{x}}\right)
$$

Area bounded by $f(x)$ for the interval $[0,2]$ on the x-axis,

$$
\text { Area }=\int_{x=a}^{x=b} f(x) d x
$$

$$
\begin{aligned}
& =\int_{0}^{2} 2 \ln \left(\sqrt{e^{x}}\right) d x \\
& =2 \int_{0}^{2} \ln \left(\sqrt{e^{x}}\right) d x \\
& =2 \int_{0}^{2} \ln \left(e^{x}\right)^{1 / 2} d x \\
& =2 \int_{0}^{2} \frac{1}{2} \ln \left(e^{x}\right) d x \\
& =2 \times \frac{1}{2} \int_{0}^{2} x d x \\
& =\left[\frac{x^{2}}{2}\right]_{0}^{2}=\left[\frac{4}{2}-0\right] \\
& =2
\end{aligned}
$$

Therefore, area will be 2 .
Hence, the correct option is (C).

Question 4

A person was born on the fifth Monday of February in a particular year. Which one of the following statements is correct based on the above information?
(A) The $2^{\text {nd }}$ February of that year is a Tuesday
(B) There will be five Sundays in the month of February in that year
(C) The $1^{\text {st }}$ February of that year is a Sunday
(D) All Mondays of February in that year have even dates

Ans. (A)
Sol. Given :
A person was born on the fifth Monday of February in a particular year.
Then,
That year should be a leap year, as in a leap year February month is of 29 days.
If $1^{\text {st }}$ February is Monday then next Monday is on $8^{\text {th }}, 15^{\text {th }}, 22^{\text {nd }}$ and $29^{\text {th }}$ of the month.
So $1^{\text {st }}$ and last day of the month February will be same.
Here, the $2^{\text {nd }}$ February of that year is a Tuesday.
Hence, the correct option is (A).

Question 5

PAGE
GATE 2022 [Afternoon Session] Mechanical Engineering

Which one of the groups given below can be assembled to get the shape that is shown above using each piece only once without overlapping with each other? (rotation and translation operations may be used).
(A)

Ans. (B)
Sol. Given :

PAGE
4 GATE 2022 [Afternoon Session] Mechanical Engineering

The group that can be assembled to get the shape that is shown above is, according to option (B).

Hence, the correct option is (B).

Q. 6 to Q. 10 Carry Two Marks Each.

Question 6

Fish belonging to species S in the deep sea have skins that are extremely black (ultra-black skin). This helps them not only to avoid predators but also sneakily attack their prey. However, having this extra layer of black pigment results in lower collagen on their skin, making their skin more fragile.
Which one of the following is the CORRECT logical inference based on the information in the above passage?
(A) Having ultra-black skin is only advantageous to species S
(B) Species S with lower collagen in their skin are at an advantage because it helps them avoid predators
(C) Having ultra-black skin has both advantages and disadvantages to species S
(D) Having ultra-black skin is only disadvantageous to species S but advantageous only to their predators

Ans. (C)
Sol. Option (C) can be inferred, as having ultra black skin has both advantages and disadvantages to species S.

Hence, the correct option is (C).

Question 7

For the past m days, the average daily production at a company was 100 units per day.
If today's production of 180 units changes the average to 110 units per day, what is the value of m ?
(A) 18
(B) 10
(C) 7
(D) 5

Ans. (C)
Sol. Average production $=\frac{\text { all production till to day }}{\mathrm{m}}=100$
According today, average production $=\frac{\text { all production till today }+180}{\mathrm{~m}+1}$

$$
\begin{aligned}
& =100=\frac{100 \mathrm{~m}+180}{\mathrm{~m}+1} \\
& =110 \mathrm{~m}+110=100 \mathrm{~m}+180 \\
& =10 \mathrm{~m}: 70 \\
\therefore \quad & \quad \mathrm{~m}=7
\end{aligned}
$$

Hence, the correct option is (C).

PAGE
5
GATE 2022 [Afternoon Session] Mechanical Engineering

Question 8

Consider the following functions for non-zero positive integers, p and q.
$f(p, q)=\underbrace{p \times p \times p \times \ldots \ldots \times p}_{q \text { terms }}=p^{q} ; f(p, 1)=p$
$g(p, q)=p^{p^{p^{p^{p^{p^{7}}}}} \underset{\text { (up toq tems) }}{ }} ; g(p, 1)=p$
Which one of the following options is correct based on the above?
(A) $f(2,2)=g(2,2)$
(B) $\operatorname{fg}(2,2), 2)<f(2, g(2,2))$
(C) $g(2,1) \neq f(2,1)$
(D) $f(3,2)>g(3,2)$

Ans. (A)
Sol. Given:

$$
\begin{array}{ll}
f(p, q)=p^{q} ; & f(p, 1)=p \\
g(p, q)=p^{p^{p^{p^{p^{2}}}}} \quad ; g(p, 1)=p
\end{array}
$$

(A) $f(2,2)=2^{2}=4$
$g(2,2)=2^{2}=4$
$f(2,2)=g(2,2)$
$\therefore \quad$ option (A) is correct
(B) $f(4,2)=f(2,4)$

$$
4^{2}=2^{4}
$$

\therefore option (B) is wrong
(C) $g(2,1)=2 ; f(2,1)=2$
\therefore option (C) is wrong
(D) $f(3,2)=3^{2}=9$

$$
g(3,2)=3^{3}=27
$$

\therefore option (D) is wrong
Hence, the correct option is (A).

Question 9

Four cities P, Q, R and S are connected through one-way routes as shown in the figure. The travel time between any two connected cities is one hour. The boxes beside each city name describe the starting time of first train of the day and their frequency of operation. For example, from city P, the first trains of the day start at 8 AM with a frequency of 90 minutes to each of R and S . A person does not spend additional time at any city other than the waiting time for the next connecting train.
If the person starts from R at 7 AM and is required to visit S and return to R, what is the minimum time required?

PAGE
6
GATE 2022 [Afternoon Session] Mechanical Engineering

(A) 6 hours 30 minutes
(B) 3 hours 45 minutes
(C) 4 hours 30 minutes
(D) 5 hours 15 minutes

Ans. (A)
Sol.

Travel time between two city is 1 hr .
Hence, the total Journey time
R to $\mathrm{Q}=1 \mathrm{hr}$
Wait at $\mathrm{Q}=1 \mathrm{hr}$
Q to $\mathrm{P}=1 \mathrm{hr}$
Wait at $\mathrm{P}=1 \mathrm{hr}$
P to $S=1 \mathrm{hr}$
Wait at $\mathrm{S}=30 \mathrm{~min}$
S to $\mathrm{R}=1 \mathrm{hr}$
Total Journey hours from R to R is 6 hr 30 m .
Hence, the correct option is (A).

Question 10

Equal sized circular regions are shaded in a square sheet of paper of 1 cm side length. Two cases, case M and case N , are considered as shown in the figures below. In the case M , four circles are shaded in the square sheet and in the case N , nine circles are shaded in the square sheet as shown.
What is the ratio of the areas of unshaded regions of case M to that of case N ?

Case M

Case N
(A) $2: 3$
(B) $1: 1$
(C) $3: 2$
(D) $2: 1$

Ans. (B)

Sol. Case M :

$\because \quad$ Diameter of a shaded circle $=\frac{1}{2} \mathrm{~cm}$
$\therefore \quad$ Radius of shaded circle $=\frac{1}{4} \mathrm{~cm}$
Area $=\frac{\pi}{16} \mathrm{~cm}^{2}$
So, Area of unshaded region $=$ Area of square sheet - Area of 4 shaded circular region.
\therefore Area of unshaded region

$$
\begin{aligned}
& =\left[1-4 \times \frac{\pi}{16}\right] \mathrm{cm}^{2} \\
& =\left[1-\frac{22}{28}\right] \mathrm{cm}^{2} \\
& =\frac{6}{28} \mathrm{~cm}^{2}
\end{aligned}
$$

Case N :

$\therefore \quad$ Area of unshaded region of case $\mathrm{N}=$ Area of square sheet - Area of shaded circular region.

$$
\begin{aligned}
& =\left[1-9 \times \frac{\pi}{36}\right] \mathrm{cm}^{2} \\
& =\left[1-\frac{22}{28}\right] \mathrm{cm}^{2} \\
& =\frac{6}{28} \mathrm{~cm}^{2}
\end{aligned}
$$

PAGE

GATE 2022 [Afternoon Session]
8 Mechanical Engineering
$\therefore \quad$ The ratio of the areas of unshaded region of case M to that of case N

$$
\begin{aligned}
& \frac{6}{28} \mathrm{~cm}^{2}: \frac{6}{28} \mathrm{~cm}^{2} \\
& =1: 1
\end{aligned}
$$

Hence, the correct option is (B).

Technical Section

Q. 1 to 25 Carry One Mark Each.

Question 1

$F(t)$ is a periodic square wave function as shown. It takes only two values, 4 and 0 , and stays at each of these values for 1 second before changing. What is the constant term in the Fourier series expansion of $F(t)$?

(A) 1
(B) 2
(C) 3
(D) 4

Ans. (B)
Sol. Given :
$F(t)$ is a periodic square wave function with time period $T=2$ second.
Complete Fourier series is given by,
$F(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n t+\sum_{n=1}^{\infty} \mathrm{b}_{n} \sin n t$
Constant term in Fourier is given by $\frac{a_{0}}{2}$
$a_{0}=\frac{1}{T} \int_{0}^{T} F(t) d t$
$a_{0}=\frac{1}{2} \int_{0}^{2} 4 d t$
$a_{0}=\frac{1}{2} \times 4 \times[t]_{0}^{2}$
$a_{0}=\frac{1}{2} \times 4 \times[2-0]$
$a_{0}=4$
Thus, constant term, $\frac{a_{0}}{2}=\frac{4}{2}=2$
Hence, the correct option is (B).

Question 2

PAGE
9

GATE 2022 [Afternoon Session] Mechanical Engineering

Consider a cube of unit edge length and sides parallel to co-ordinate axes, with its centroid at the point (1, 2,3). The surface integral $\int_{A} \vec{F} \cdot d \vec{A}$ of a vector field $\vec{F}=3 x \hat{i}+5 y \hat{j}+6 z \hat{k}$ over the entire surface A of the cube is \qquad .
(A) 14
(B) 27
(C) 28
(D) 31

Ans. (A)
Sol. Given : Vector field, $\vec{F}=3 x \hat{i}+5 y \hat{j}+6 z \hat{k}$
Surface integral, $I=\int_{A} \vec{F} \cdot \overrightarrow{d A}=$?
where, A is entire surface A of the cube.
By divergence theorem,

$$
\begin{align*}
& \oiint_{S} \vec{F} \hat{n} d s=\iiint_{V} \vec{\nabla} \cdot \vec{F} d v \\
& I=\iiint_{V} \vec{\nabla} \cdot \vec{F} d v \tag{i}\\
& \begin{aligned}
\operatorname{Div}(\vec{F}) & =\vec{\nabla} \cdot \vec{F}=\left(\hat{i} \frac{\delta}{\delta x}+\hat{j} \frac{\delta}{\delta y}+\hat{k} \frac{\delta}{\delta z}\right) \cdot(3 x \hat{i}+5 y \hat{j}+6 z \hat{k}) \\
& =\vec{\nabla} \cdot \vec{F}=3+5+6=14
\end{aligned}
\end{align*}
$$

By equation (i),

$$
\begin{aligned}
& I=\iiint_{V} 14 d v \\
& I=14 \iiint_{V} d v \\
& I=14 V
\end{aligned}
$$

Volume of cube, $V=a^{3}$ (with $a=1$ unit edge length)

$$
\begin{aligned}
& I=14 \times a^{3} \\
& I=14 \times 1^{3} \\
& I=14
\end{aligned}
$$

Hence, the correct option is (A).

Question 3

Consider the definite integral
$\int_{1}^{2}\left(4 x^{2}+2 x+6\right) d x$.
Let I_{e} be the exact value of the integral. If the same integral is estimated using Simpson's rule with 10 equal subintervals, the value is I_{s}. The percentage error is defined as $e=100 \times\left(I_{e}-I_{s}\right) / I_{e}$. The value of e is
(A) 2.5
(B) 3.5
(C) 1.2
(D) 0

Ans. (D)

Sol. Given : Definite integral, $I=\int_{1}^{2}\left(4 x^{2}+2 x+6\right) d x$
Percentage error, $e=100 \times \frac{I_{e}-I_{s}}{I_{e}}$
where, I_{e} be the exact value of integral and I_{s} be the value which is evaluated using Simpson's $\frac{1}{3}$ rule with 10 equal subintervals.
The given $f(x)=4 x^{2}+2 x+6$ is a quadratic equation, for which exact value $\left(I_{e}\right)$ is always equal to approximated value $\left(I_{s}\right)$.

Therefore, $\quad I_{e}=I_{s}$

$$
\begin{aligned}
& e=100 \times \frac{0-0}{I_{e}} \\
& e=0 \%
\end{aligned}
$$

Hence, the correct option is (D).

Question 4

Given $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$.
If a and b are positive integers, the value of $\int_{-\infty}^{\infty} e^{-a(x+b)^{2}} d x$ is \qquad .
(A) $\sqrt{\pi a}$
(B) $\sqrt{\frac{\pi}{a}}$
(C) $b \sqrt{\pi a}$
(D) $b \sqrt{\frac{\pi}{a}}$

Ans. (B)
Sol. Given :

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} \tag{i}
\end{equation*}
$$

We need to find the value of $\int_{-\infty}^{\infty} e^{-a(x+b)^{2}} d x$ where, a and b are positive integers.

$$
\begin{aligned}
& I=\int_{-\infty}^{\infty} e^{-a(x+b)^{2}} d x \\
& x+b=t \\
& d x=d t
\end{aligned}
$$

For $x=-\infty \Rightarrow t=-\infty$
and $x=\infty \Rightarrow t=\infty$

$$
I=\int_{-\infty}^{\infty} e^{-a t^{2}} d t
$$

Let

$$
\begin{aligned}
& a t^{2}=p^{2} \\
& 2 a t d t=2 p d p \\
& d t=\frac{p}{a t} d p \\
& d t=\frac{p}{a \times \frac{p}{\sqrt{a}}} d p \\
& d t=\frac{1}{\sqrt{a}} d p
\end{aligned}
$$

For $t=-\infty \Rightarrow p=-\infty$
and $t=\infty \Rightarrow p=\infty$

$$
\begin{aligned}
& I=\int_{-\infty}^{\infty} e^{-p^{2}} \frac{1}{\sqrt{a}} d p \\
& I=\frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} e^{-p^{2}} d p
\end{aligned}
$$

From equation (i),

$$
\begin{aligned}
& I=\frac{1}{\sqrt{a}} \times \sqrt{\pi} \\
& I=\sqrt{\frac{\pi}{a}}
\end{aligned}
$$

Hence, the correct option is (B).

Question 5

A polynomial $\varphi(s)=a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}$ of degree $n>3$ with constant real coefficients $a_{n}, a_{n-1}, \ldots a_{0}$ has triple roots at $s=-\sigma$. Which one of the following conditions must be satisfied?
(A) $\varphi(s)=0$ at all the three values of s satisfying $s^{3}+\sigma^{3}=0$
(B) $\varphi(s)=0, \frac{d \varphi(s)}{d s}=0$, and $\frac{d^{2} \varphi(s)}{d s^{2}}=0$ at $s=-\sigma$
(C) $\varphi(s)=0, \frac{d^{2} \varphi(s)}{d s^{2}}=0$, and $\frac{d^{4} \varphi(s)}{d s^{4}}=0$ at $s=-\sigma$
(D) $\varphi(s)=0$, and $\frac{d^{3} \varphi(s)}{d s^{3}}=0$ at $s=-\sigma$

Ans. (B)
Sol. The given polynomial
$\phi(s)=a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}$
For stationary point, $\frac{d \phi(s)}{d s}=0$
Since, $\phi(s)$ has triple roots at $s=-\sigma,(s+\sigma)^{3}$ will be one of it factors and $\phi(-\sigma)=0$.
There will be an inflection point on the curve of $\phi(S)$. Therefore, the first order $\frac{d}{d s} \phi(s)$ and second order derivative $\frac{d^{2}}{d s^{2}} \phi(s)$ at $s=-\sigma$ will be zero.
$\therefore \phi(s)=0, \frac{d}{d s} \phi(s)=0$ and $\frac{d^{2}}{d s^{2}} \phi(s)=0$ at $s=-\sigma$
Hence, the correct option is (B).

Question 6

Which one of the following is the definition of ultimate tensile strength (UTS) obtained from a stressstrain test on a metal specimen?
(A) Stress value where the stress-strain curve transitions from elastic to plastic behavior
(B) The maximum load attained divided by the original cross-sectional area
(C) The maximum load attained divided by the corresponding instantaneous cross-sectional area
(D) Stress where the specimen fractures

Ans. (B)
Sol. The definition of ultimate tensile strength (UTS) obtained from a stress-strain test on a metal specimen is the maximum load attained divided by the original cross-sectional area.
i.e. $\sigma_{u l t}=\frac{P_{\max }}{A_{0}}$

Where, $\sigma_{u l t}=$ ultimate tensile strength,
$P_{\text {max }}=$ maximum load obtained in a tensile test,
$A_{0}=$ original cross-sectional area before load applied
Hence, the correct option is (B).

Question 7

A massive uniform rigid circular disc is mounted on a frictionless bearing at the end E of a massive uniform rigid shaft $A E$ which is suspended horizontally in a uniform gravitational field by two identical light inextensible strings $A B$ and $C D$ as shown, where G is the center of mass of the shaft-disc assembly and g is the acceleration due to gravity. The disc is then given a rapid spin ω about its axis in the positive x - axis direction as shown, while the shaft remains at rest. The direction of rotation is defined by using the right-hand thumb rule. If the string $A B$ is suddenly cut, assuming negligible energy dissipation, the shaft $A E$ will

(A) rotate slowly (compared to ω) about the negative z-axis direction
(B) rotate slowly (compared to ω) about the positive z-axis direction
(C) rotate slowly (compared to ω) about the positive y-axis direction
(D) rotate slowly (compared to ω) about the negative y-axis direction

Ans. (A)
Sol. It is given that when view from rear disc rotates clock-wise, when string $A B$ cut the point A goes down because C.G. of shaft away from C and towards A. So gyroscopic effect will be

Angular velocity vector

Rotate slowly (compared to ω) direction about the negative z -axis.
Hence, the correct option is (A).

Question 8

A structural member under loading has a uniform state of plane stress which in usual notations is given by $\sigma_{x}=3 P, \sigma_{y}=-2 P$ and $\tau_{x y}=\sqrt{2} P$, where $P>0$. The yield strength of the material is 350 MPa . If the member is designed using the maximum distortion energy theory, then the value of P at which yielding starts (according to the maximum distortion energy theory) is
(A) 70 MPa
(B) 90 MPa
(C) 120 MPa
(D) 75 MPa

Ans. (A)
Sol. For the maximum distortion energy theory,

$$
\begin{equation*}
U_{d}=\frac{1}{6 G}\left[\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}-\left(\sigma_{1} \sigma_{2}+\sigma_{2} \sigma_{3}+\sigma_{3} \sigma_{1}\right)\right] \tag{i}
\end{equation*}
$$

For actual condition,

$$
\sigma_{3}=0 \text { (because 2D condition) }
$$

Radius of Mohr's circle $(R)=\sqrt{\left(\frac{\sigma_{x x}-\sigma_{y y}}{2}\right)^{2}+\tau_{x y}^{2}}$

$$
\begin{aligned}
& R=\sqrt{\left(\frac{3 P+2 P}{2}\right)^{2}+(\sqrt{2} P)^{2}} \\
& \begin{aligned}
R=\sqrt{\frac{25 P^{2}}{4}+2 P^{2}}
\end{aligned} \\
& \\
& =P \sqrt{\frac{25+8}{4}} \\
& \\
& =P \sqrt{\frac{33}{4}}
\end{aligned}
$$

$$
R=2.8722 P
$$

Now, principal stresses,

$$
\begin{aligned}
& \begin{aligned}
& \sigma_{1,2}=\frac{\sigma_{x x}+\sigma_{y y}}{2} \pm R \\
& \qquad=\frac{3 P-2 P}{2} \pm 2.8722 P \\
& \sigma_{1,2}=\frac{P}{2} \pm 2.8722 P \\
& \sigma_{1}= \frac{P}{2}+2.8722 P \\
& \sigma_{1}=\frac{6.7444 P}{2} \\
& \sigma_{1}=3.3722 P
\end{aligned}
\end{aligned}
$$

And $\sigma_{2}=\frac{P}{2}-2.8722 P$

$$
=-\frac{4.7444 P}{2}
$$

$$
\sigma_{2}=-2.3722 P
$$

By putting in equation (i),

$$
U_{d}=\frac{1}{6 G}\left[(3.3722 P)^{2}+(-2.3722 P)^{2}+0-(-3.3722 P \times 2.3722 P)+0+0\right]
$$

$$
\begin{align*}
& =\frac{1}{6 G}\left[11.37 P^{2}+5.627 P^{2}+7.999 P^{2}\right] \\
& =\frac{1}{6 G}\left[16.997 P^{2}+7.999 P^{2}\right] \\
& U_{d}=\frac{1}{6 G}\left[24.996 P^{2}\right] \tag{ii}
\end{align*}
$$

During tensile test failure,

$$
\sigma_{1}=\sigma_{f}, \sigma_{2}=0, \sigma_{3}=0
$$

Where, σ_{f} is tensile yield strength $=350 \mathrm{MPa}$.
So, $\left(U_{d}\right)_{\text {failure }}=\frac{1}{6 G}\left[\sigma_{f}^{2}+0+0-\left(\sigma_{f} \times 0+0+0\right)\right]$

$$
\begin{equation*}
\left(U_{d}\right)_{f}=\frac{\sigma_{f}^{2}}{6 G} \tag{iii}
\end{equation*}
$$

Equating equation (ii) and (iii),

$$
\begin{aligned}
& U_{d}=\left(U_{d}\right)_{f} \\
& \frac{1}{6 G} \times 24.996 P^{2}=\frac{\sigma_{f}^{2}}{6 G} \\
& 24.996 P^{2}=\sigma_{f}^{2} \\
& 24.996 P^{2}=(350)^{2} \quad\left(\because \sigma_{f}=350 \mathrm{MPa}\right) \\
& P=70 \mathrm{MPa}
\end{aligned}
$$

Hence, the correct option is (A).

Question 9

Fluidity of a molten alloy during sand casting depends on its solidification range. The phase diagram of a hypothetical binary alloy of components A and B is shown in the figure with its eutectic composition and temperature. All the lines in this phase diagram, including the solidus and liquidus lines, are straight lines. If this binary alloy with 15 weight $\%$ of B is poured into a mould at a pouring temperature of $800^{\circ} \mathrm{C}$, then the solidification range is

(A) $400^{\circ} \mathrm{C}$
(B) $250{ }^{\circ} \mathrm{C}$
(C) $800^{\circ} \mathrm{C}$
(D) $150^{\circ} \mathrm{C}$

Ans. (D)
Sol. Since, $M N=300, X Y=15, N O=30$ and $X N=$ solidification range = ?
By linear interpolation,
In similar triangles $\triangle M X Y$ and $\triangle M N O$,

$$
\begin{aligned}
& \frac{M X}{X Y}=\frac{M N}{N O} \\
& \frac{M X}{15}=\frac{300}{30}
\end{aligned}
$$

$$
M X=150
$$

$\therefore \quad$ For solidification range, $X N=M N-M X$

$$
X N=300-150
$$

Solidification range, $X N=150^{\circ} \mathrm{C}$
Hence, the correct option is (D).

Question 10

A shaft of diameter $25_{-0.07}^{-0.04} \mathrm{~mm}$ is assembled in a hole of diameter $25_{-0.00}^{+0.02} \mathrm{~mm}$. Match the allowance and limit parameter in Column I with its corresponding quantitative value in Column II for this shaft-hole assembly.

Allowance and limit parameter (Column I)		Quantitative value (Column II)	
P	Allowance	1	0.09 mm
Q	Maximum clearance	2	24.96 mm
R	Maximum material limit for hole	3	0.04 mm

(A) P-3, Q-1, R-4
(B) $\mathrm{P}-1, \mathrm{Q}-3, \mathrm{R}-2$
(C) P-1, Q-3, R-4
(D) P-3, Q-1, R-2

Ans. (A)
Sol.

1. Allowance -0.04 mm (due to minimum clearance)
2. Maximum clearance $\rightarrow(0.07+0.02)=0.09 \mathrm{~mm}$
3. Maximum material limit for hole \rightarrow lower limit g hole $=25 \mathrm{~mm}$ Hence, the correct option is (A).

Question 11

Match the additive manufacturing technique in Column I with its corresponding input material in Column II.

Additive manufacturing technique (Column I)		Input material (Column II)	
P	Fused deposition modelling	1	Photo sensitive liquid resin
Q	Laminated object manufacturing	2	Heat fusible powder
R	Selective laser sintering	3	Filament of polymer
		4	Sheet of thermoplastic or green compacted metal sheet

(A) P-3, Q-4, R-2
(B) $\mathrm{P}-1, \mathrm{Q}-2, \mathrm{R}-4$
(C) P-2, Q-3, R-1
(D) $\mathrm{P}-4, \mathrm{Q}-1, \mathrm{R}-4$

Ans. (A)
Sol. P. Fused deposition modelling - Filament of polymer
Q. Laminated object manufacturing - Sheet of thermoplastic or green compacted metal sheet
R. Selective laser sintering - Heat fusible powder

Hence, the correct option is (A).

Question 12

Which one of the following CANNOT impart linear motion in a CNC machine?
(A) Linear motor
(B) Ball screw
(C) Lead screw
(D) Chain and sprocket

Ans. (D)
Sol. Chain and sprocket cannot impart linear motion in a CNC machine.
Hence, the correct option is (D).

Question 13

Which one of the following is an intensive property of a thermodynamic system?
(A) Mass
(B) Density
(C) Energy
(D) Volume

Ans. (B)
Sol. Density is an intensive property of a thermodynamic system.
Hence, the correct option is (B).

Question 14

Consider a steady flow through a horizontal divergent channel, as shown in the figure, with supersonic flow at the inlet. The direction of flow is from left to right.
Pressure at location B is observed to be higher than that at anstream location A. Which among the following options can be the reason?

(A) Since volume flow rate is constant, velocity at B is lower than velocity at A
(B) Normal shock
(C) Viscous effect
(D) Boundary layer separation

Ans. (B)
Sol.

Within the distance of a mean free path, the flow passes from a supersonic to a subsonic state, the velocity decreases suddenly and the pressure rises sharply. A normal shock is said to have occurred if there is an abrupt reduction of velocity in the downstream in course of a supersonic flow in a passage or around a body.
Since, volume flow rate is constant, velocity at B is lower than velocity at A and pressure at location B is observed to be higher than that at an upstream location A. Therefore, it indicates the normal shock. Hence, the correct option is (B).

Question 15

Which of the following non-dimensional terms is an estimate of Nusselt number?
(A) Ratio of internal thermal resistance of a solid to the boundary layer thermal resistance
(B) Ratio of the rate at which internal energy is advected to the rate of conduction heat transfer
(C) Non-dimensional temperature gradient
(D) Non-dimensional velocity gradient multiplied by Prandtl number

Ans. (C)
Sol. Nusselt number equal to the dimensionless temperature gradient at the surface, and it provides a measure of the convective heat transfer occurring at the surface.
Nusselt number, $N u=\frac{h D}{k_{\text {fuid }}}$
Where, $k_{\text {fluid }}=$ thermal conductivity of fluid
$N u=\frac{Q_{\text {conv. }}}{Q_{\text {cond. }}}=\frac{\text { Condution thermal resistance offered by fluid if it were stationary }}{\text { Surface convection thermal resistance }}$
Hence, the correct option is (C).

Question 16

A square plate is supported in four different ways (configurations (P) to (S) as shown in the figure). A couple moment C is applied on the plate. Assume all the members to be rigid and mass-less, and all joints to be frictionless. All support links of the plate are identical.

The square plate can remain in equilibrium in its initial state for which one or more of the following support configurations?
(A) Configuration (P)
(C) Configuration (R)
(B) Configuration (Q)
(D) Configuration (S)

Ans. (B,C,D)
Sol. Configuration (P) :

Therefore, it is structure and stable system will be in equilibrium.
But, we know equilibrium is a state of the body where all the forces are of the same magnitude making the net resultant zero. This is called static concurrent equilibrium.
i.e.

But, the given square plate has couple moment c which will be the disturbing action for the concurrent forces and the square plate (configurations P) due to this action cannot be remain in equilibrium.
Hence, cannot be remain in equilibrium.
Configuration (Q) :

Here, the forces acting on the square plate is countering the action of couple moment c. Due to this counter action of forces (F) to resist the couple moment c, the square plate will remain in equilibrium.
i.e.

Forces (F) giving counter clockwise moment and couple moment c giving clockwise moment. Hence, will remain in equilibrium.
Configuration (R) :

Similarly as we discussed above, here also the forces (F) resisting the couple moment c which is in clockwise direction by providing the anticlockwise moment.
i.e.

Hence, will remain in equilibrium.
Configuration (S) :

In the above arrangement, due to couple moment c, the reactions forces will try to counter the clockwise rotation which in result bring the arrangement in equilibrium or stable position
i.e.

Hence, will remain in equilibrium.
Hence the correct option is (B), (C), (D).

Question 17

Consider sand casting of a cube of edge length a. A cylindrical riser is placed at the top of the casting. Assume solidification time, $t_{s} \propto V / A$, where V is the volume and A is the total surface area dissipating heat. If the top of the riser is insulated, which of the following radius/radii of riser is/are acceptable?
(A) $\frac{a}{3}$
(B) $\frac{a}{2}$
(C) $\frac{a}{4}$
(D) $\frac{a}{6}$

Ans. (A,B)
Sol.

Here,

$$
t_{s} \propto\left(\frac{V}{A}\right)
$$

We know that,

$$
\left(t_{s}\right)_{\text {riser }} \geq\left(t_{s}\right)_{\text {casting }}
$$

\Rightarrow Volume of riser \geq Volume of casting

$$
\begin{aligned}
& \frac{\frac{\pi}{4} d^{2} h}{\pi d h} \geq \frac{a}{6} \\
& \Rightarrow \quad \frac{2 r}{4} \geq \frac{a}{6} \\
& \Rightarrow \quad \frac{r}{2} \geq \frac{a}{6} \\
& r=\frac{a}{3}
\end{aligned}
$$

PAGE
23
GATE 2022 [Afternoon Session] Mechanical Engineering

Hence, the correct option is (A, B).

Question 18

Which of these processes involve(s) melting in metallic workpieces?
(A) Electrochemical machining
(B) Electric discharge machining
(C) Laser beam machining
(D) Electron beam machining

Ans. (B,C,D)
Sol. In, electron beam machining, electrical discharge machining and Laser beam machining, involves melting in metallic workpiece.
Hence, the correct option is (B,C,D).

Question 19

The velocity field in a fluid is given to be $\vec{V}=(4 x y) \hat{i}+2\left(x^{2}-y^{2}\right) \hat{j}$.
Which of the following statement(s) is/are correct?
(A) The velocity field is one-dimensional.
(B) The flow is incompressible.
(C) The flow is irrotational.
(D) The acceleration experienced by a fluid particle is zero at $(x=0, y=0)$.

Ans. (B,C,D)
Sol.

$$
\begin{array}{ll}
& \vec{V}=(4 x y) \hat{i}+2\left(x^{2}-y^{2}\right) \hat{j} \\
\because & \vec{\nabla} \cdot \vec{V}=0 \\
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \\
& \frac{\partial(4 x y)}{\partial x}+\frac{\partial\left[2\left(x^{2}-y^{2}\right)\right]}{\partial y}=0 \quad\left(\because \frac{\partial w}{\partial z}=0\right)
\end{array}
$$

$$
4 y-4 y=0
$$

$$
0=0 \text { (Flow is incompressible) }
$$

Now, checking irrotational,

$$
\begin{aligned}
& \omega_{z}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \\
& =\frac{1}{2}\left(\frac{\partial\left[2\left(x^{2}-y^{2}\right)\right]}{\partial x}-\frac{\partial(4 x y)}{\partial y}\right) \\
& =\frac{1}{2}(4 x-4 x) \\
& \omega_{z}=0 \text { (Flow is irrotational) }
\end{aligned}
$$

Now, checking the acceleration experienced by a fluid particle is zero at $(x=0, y=0)$,

$$
\begin{aligned}
& a_{x}=u \frac{\partial u}{\partial x}+v \frac{\partial v}{\partial y}+0+0 \\
& =4 x y \frac{\partial}{\partial x} 4 x y+\left(2 x^{2}-2 y^{2}\right) \frac{\partial}{\partial y}\left(2 x^{2}-2 y^{2}\right) \\
& =16 x y^{2}+\left(2 x^{2}-2 y^{2}\right) \times(-4 y) \\
& a_{x}=16 x y^{2}-8 x^{2} y+8 y^{3}
\end{aligned}
$$

At $(x=0, y=0)$:
$a_{x}=0$
And $a_{y}=u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+0+0$

$$
\begin{aligned}
& =4 x y \frac{\partial}{\partial x}\left(2 x^{2}-2 y^{2}\right)+\left(2 x^{2}-2 y^{2}\right) \frac{\partial}{\partial y}\left(2 x^{2}-2 y^{2}\right) \\
& =4 x y \times 4 x+\left(2 x^{2}-2 y^{2}\right) \times(-4 y)
\end{aligned}
$$

$$
a_{y}=16 x^{2} y-8 x^{2} y+8 y^{3}
$$

At $(x=0, y=0)$:

$$
a_{y}=0
$$

\therefore Total acceleration, $a_{\text {total }}=\sqrt{a_{x}^{2}+a_{y}^{2}}$

$$
a_{\text {total }}=\sqrt{0+0}
$$

$$
\left.a_{\text {total }}=0 \text { (Acceleration experienced by a fluid particle is zero at } x=0, y=0\right) .
$$

Since, $\vec{V}=(4 x y) \hat{i}+2\left(x^{2}-y^{2}\right) \hat{j}$ shows $4 x y$ in \hat{i} direction and $2\left(x^{2}-y^{2}\right)$ in \hat{j} direction i.e. velocity field is two dimensional.
Hence, the correct option is (B), (C) and (D).

Question 20

A rope with two mass-less platforms at its two ends passes over a fixed pulley as shown in the figure. Discs with narrow slots and having equal weight of 20 N each can be placed on the platforms. The number of discs placed on the left side platform is n and that on the right side platform is m.
It is found that for $n=5$ and $m=0$, a force $F=200 \mathrm{~N}$ (refer to part (i) of the figure) is just sufficient to initiate upward motion of the left side platform. If the force F is removed then the minimum value of m (refer to part (ii) of the figure) required to prevent downward motion of the left side platform is \qquad (in integer).

Ans. 3 to 3
Sol. Condition - I

$\frac{T_{1}}{T_{2}}=e^{\mu \theta}$
Where angle of lap $(\theta)=\pi$

$$
\begin{align*}
& \frac{200}{100}=e^{\mu \theta} \\
& 2=e^{\mu \theta} \tag{i}
\end{align*}
$$

Condition-II

$$
\frac{T_{1}}{T_{3}}=e^{\mu \pi}
$$

$\frac{200}{T_{3}}=e^{\mu \pi}$
On equating equation (i) and (ii)
$T_{3}=50 \mathrm{~N}$
For 50 N number of discs $=\frac{50}{20}=2.5$
Hence minimum value of m required to prevent downward motion of the left side of platform is 3 .

Question 21

For a dynamical system governed by the equation,

$$
\ddot{x}(t)+2 \zeta \omega \dot{x}(t)+\omega_{n}^{2} x(t)=0,
$$

the damping ratio ζ is equal to $\frac{1}{2 \pi} \log _{e} 2$. The displacement x of this system is measured during a hammer test. A displacement peak in the positive displacement direction is measured to be 4 mm . Neglecting higher powers (>1) of the damping ratio, the displacement at the next peak in the positive direction will be \qquad mm (in integer).
Ans. 2
Sol. We know that,
Displacement ratio, $\frac{x_{0}}{x_{1}}=e^{\delta}$
Where, δ is logarithmic decrement.

$$
\begin{aligned}
\because \quad \delta & =\frac{2 x \xi}{\sqrt{1-\xi^{2}}} \\
\delta & =\frac{2 \pi \times 0.1103}{\sqrt{1-(0.1103)^{2}}} \\
\delta & =0.69728
\end{aligned}
$$

By putting in equation (i),

$$
\begin{aligned}
& \frac{x_{0}}{x_{1}}=e^{0.69728} \\
& \frac{4}{x_{1}}=e^{0.69728} \quad\left(\because x_{0}=4 \mathrm{~mm}\right) \\
& x_{1}=2 \mathrm{~mm}
\end{aligned}
$$

Hence, the displacement at the next peak in the positive direction will be 2 mm .

Question 22

An electric car manufacturer underestimated the January sales of car by 20 units, while the actual sales was 120 units. If the manufacturer uses exponential smoothing method with a smoothing constant of $\alpha=$ 0.2 , then the sales forecast for the month of February of the same year is \qquad units (in integer).

PAGE 27

GATE 2022 [Afternoon Session] Mechanical Engineering

Ans. 104
Sol. Forecast of January, $F_{J a n}=D_{J a n}-20$ $(\because 20$ units is under estimated in January)

$$
F_{J a n}=120-20=100
$$

Forecast for the month of February,

$$
\begin{aligned}
& F_{F e b}=F_{J a n}+\alpha\left[D_{J a n}-F_{J a n}\right] \\
& F_{F e b}=100+0.2[120-100] \\
& F_{F e b}=104
\end{aligned}
$$

Hence, the sales forecast for the month of February of the same year is 104 units.

Question 23

The demand of a certain part is 1000 parts/year and its cost is Rs. 1000/part. The orders are placed based on the economic order quantity (EOQ). The cost of ordering is Rs. 100/order and the lead time for receiving the orders is 5 days. If the holding cost is Rs. 20/part/year, the inventory level for placing the orders is \qquad parts (round off to the nearest integer).
Ans. 14
Sol. Given :
Demand of certain part $(D)=1000$ parts/year
Cost $(C)=$ Rs. $1000 /$ part
Ordering cost $\left(C_{0}\right)=$ Rs. 100/order
Lead time $\left(L_{T}\right)=5$ days
Holding cost $\left(C_{h}\right)=$ Rs. 20/part/year

Where, R.O.L $=$ Re-order level
$\because \quad$ R.O.L $=L_{T} \times d$
Where, $d=$ consumption per day
$\because \quad d=\frac{1000}{365}$ unit/day
From equation (i),

$$
\text { R.O.L }=5 \times \frac{1000}{365}
$$

$$
\text { R.O. } \mathrm{L}=13.69 \simeq 14 \text { parts }
$$

Hence, the inventory level for placing the orders is 14 parts.

Question 24

Consider 1 kg of an ideal gas at 1 bar and 300 K contained in a rigid and perfectly insulated container. The specific heat of the gas at constant volume c_{v} is equal to $750 \mathrm{~J} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}$. A stirrer performs 225 kJ of work on the gas. Assume that the container does not participate in the thermodynamic interaction. The final pressure of the gas will be \qquad bar (in integer).
Ans. 2
Sol.

From first law,

$$
\begin{aligned}
& \quad d Q=d v+(d w)_{d i s p}+(d w)_{\text {stirrer }} \\
& d V=-(d w)_{\text {stirrer }} \\
& m c_{v}\left(T_{F}-T:\right)=-(225) \\
& 1 \times 0.750\left(T_{F}-300\right)=225 \\
& T_{F}=300+\frac{225}{0.75} \\
& T_{F}=600 \mathrm{~K} \\
& \text { Since, rigid container (volume = constant), }
\end{aligned} \quad\left(\because(d w)_{d i s p}=0 \text { and } d Q=0\right)
$$

$\therefore \quad p \propto T$
$p_{2}=1 \times \frac{600}{300}$

$\frac{p_{2}}{p_{1}}=\frac{T_{2}}{T_{1}}$
$p_{2}=2$ bar
Hence, the final pressure of the gas will be 2 bar.

Question 25

Wien's law is stated as follows: $\lambda_{m} T=C$, where C is $2898 \mu \mathrm{~m} \cdot \mathrm{~K}$ and λ_{m} is the wave length at which the emissive power of a black body is maximum for a given temperature T. The spectral hemispherical

PAGE
29
emissivity $\left(\varepsilon_{\lambda}\right)$ of a surface is shown in the figure below $\left(1 \AA=10^{-10} \mathrm{~m}\right)$. The temperature at which the total hemispherical emissivity will be highest is \qquad K (round off to the nearest integer).

Ans. 4830
Sol.

$\because \quad \lambda_{m} T=C$

$$
\left(6000 \times 10^{-10}\right) \times T_{\max }=2898 \times 10^{-6}
$$

$$
T_{\max }=4830 \mathrm{~K}
$$

Hence, the temperature at which the total hemispherical emissivity will be highest is 4830 K .

Q. 26 to 25 Carry Two Marks Each.

Question 26

For the exact differential equation,

$$
\frac{d u}{d x}=\frac{-x u^{2}}{2+x^{2} u}
$$

which one of the following is the solution?
(A) $u^{2}+2 x^{2}=$ constant
(B) $x u^{2}+u=$ constant
(C) $\frac{1}{2} x^{2} u^{2}+2 u=$ constant
(D) $\frac{1}{2} u x^{2}+2 x=$ constant

Ans. (C)
Sol. Given : The exact differential equation,

$$
\begin{aligned}
& \frac{d u}{d x}=\frac{-x u^{2}}{2+x^{2} u} \\
& \left(2+x^{2} u\right) d u=-x u^{2} d x
\end{aligned}
$$

$$
\left(2+x^{2} u\right) d u+x u^{2} d x=0
$$

We know that,
A ordinary differential equation $M d u+N d x=0$ is to be exact.
If

$$
\frac{\delta M}{\delta x}=\frac{\delta N}{\delta u}
$$

That mean, $\quad M=2+x^{2} u, \quad N=x u^{2}$

$$
\begin{aligned}
& \frac{\delta M}{\delta x}=0+2 x u, \quad \frac{\delta N}{\delta u}=2 x u \\
& \frac{\delta M}{\delta x}=2 x u
\end{aligned}
$$

Here,

$$
\frac{\delta M}{\delta x}=\frac{\delta N}{\delta u}
$$

The given differential equation is exact (already given in question).
Solution for exact differential equation is given by,

$$
\begin{aligned}
& \int M d u+\int N d x=\text { Constant } \quad \text { [where, } N \text { is not containing } x \text { terms] } \\
& \int\left(2+x^{2} u\right) d u+\int 0 d x=\text { Constant } \\
& 2 u+\frac{x^{2} u^{2}}{2}=\text { Constant } \\
& \frac{1}{2} x^{2} u^{2}+2 u=\text { Constant }
\end{aligned}
$$

Hence, the correct option is (C).

Question 27

A rigid homogeneous uniform block of mass 1 kg , height $h=0.4 \mathrm{~m}$ and width $b=0.3 \mathrm{~m}$ is pinned at one corner and placed upright in a uniform gravitational field ($g=9.81 \mathrm{~m} / \mathrm{s}^{2}$), supported by a roller in the configuration shown in the figure. A short duration (impulsive) force F, producing an impulse I_{F}, is applied at a height of $d=0.3 \mathrm{~m}$ from the bottom as shown. Assume all joints to be frictionless. The minimum value of I_{F} required to topple the block is

(A) 0.953 Ns
(B) 1.403 Ns
(C) 0.814 Ns
(D) 1.172 Ns

PAGE
31

Ans. (A)
Sol.

Where, $G=$ centre of gravity point
For $\triangle A O G$:

$$
\begin{aligned}
& O G^{2}=A G^{2}+A O^{2} \\
& r^{2}=(0.2)^{2}+(0.15)^{2} \\
& r=0.25 \mathrm{~m}
\end{aligned}
$$

Moment of intertial about point O :
Applying parallel axis theorem,

$$
\begin{equation*}
I_{0}=I_{G}+m(r)^{2} \tag{i}
\end{equation*}
$$

Where, $I_{G}=$ moment of inertia about its centre,

$$
m=\text { mass of block }
$$

We know, moment of inertia of rectangular block,

$$
\begin{aligned}
I_{G}= & \frac{m}{12}\left(h^{2}+b^{2}\right) \\
& =\frac{1}{12}\left(0.4^{2}+0.3^{2}\right)
\end{aligned}
$$

$$
I_{G}=0.0208 \mathrm{kgm}^{2}
$$

By putting in equation (i),

$$
\begin{aligned}
& I_{0}=0.0208+1(0.25)^{2} \\
& I_{0}=0.0833 \mathrm{kgm}^{2}
\end{aligned}
$$

Now, net moment $\left(\Sigma M_{0}\right)=I_{0} \alpha$

$$
\begin{aligned}
& F \times 0.3-m g \times 0.15=I_{0} \times \frac{d \omega}{d t} \\
& (F \times 0.3-1 \times 9.81 \times 0.15) d t=I_{0} \times d \omega \\
& (F \times 0.3-1.4715) d t=I_{0} \times d \omega
\end{aligned}
$$

Integrating the equation by taking limit from initial position 1 (not topple) to final position 2 (toppled).

$$
0.3 \int_{1}^{2} F d t-1.4715 \int_{1}^{2} d t=\int_{1}^{2} I_{0} d \omega
$$

Here, $\int_{1}^{2} F d t$ representing impulse force, $\left(I_{F}\right)$.
$\therefore \quad 0.3 \times I_{F}-1.4715 \int_{1}^{2} d t=\int_{1}^{2} I_{0} d \omega$
Since, the impulsive force is acting for short duration, therefore neglecting, $d t=0$
Now,

$$
\begin{align*}
& 0.3 \times I_{F}-0=\int_{1}^{2} I_{0} d \omega \\
& 0.3 \times I_{F}=I_{0}\left(\omega_{2}-\omega_{1}\right) \\
& 0.3 \times I_{F}=0.0833\left(\omega_{2}-0\right) \quad\left(\because \omega_{1} \text { is at initial position during not topple will be zero }\right) \\
& 0.3 \times I_{F}=0.0833 \times \omega_{2} \tag{ii}
\end{align*}
$$

Position 2
Position 3

Then, at position 2 the block will come in angular motion with ω_{2} but after shifting of centroid point i.e. G along the axis of point ' O ' let say position 3 , at position $3, \omega_{3}$ will become zero because at this point angular rotation will be due to shifting of centroid of block and eccentric distance will produce torque that will be the actual reason of rotation only.
$\because \quad O G=r=0.25 \mathrm{~m}, O K=0.2 \mathrm{~m}$
$\therefore \quad \Delta h=O G-O K$

$$
\Delta h=0.25-0.2
$$

$$
\Delta h=0.05 \mathrm{~m}
$$

Balancing energy conservation for position (2) and position (3) :

$$
\begin{aligned}
& (\text { K.E. })_{2}=(\text { K.E. })_{3}+(P \cdot E .)_{3} \\
& \frac{1}{2} I_{0} \omega_{2}^{2}=\frac{1}{2} I_{0} \omega_{3}^{2}+m g \times \Delta h \\
& \frac{1}{2} I_{0} \omega_{2}^{2}=0+m g \times \Delta h \quad\left(\because \omega_{3}=0\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} \times 0.0833 \times \omega_{2}^{2}=0+1 \times 9.81 \times 0.05 \\
& 0.04165 \times \omega_{2}^{2}=0.4905 \\
& \omega_{2}=\sqrt{11.777} \\
& \omega_{2}=3.4317 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

By putting in equation (ii),

$$
\begin{aligned}
& 0.3 \times I_{F}=0.0833 \times 3.4317 \\
& I_{F}=0.9528 \mathrm{~N}-\mathrm{s} \simeq 0.953 \mathrm{~N}-\mathrm{s}
\end{aligned}
$$

Impulse, $I_{F}=0.953 \mathrm{~N}-\mathrm{s}$
Hence, the correct option is (A).
Question 28
A linear elastic structure under plane stress condition is subjected to two sets of loading, I and II. The resulting states of stress at a point corresponding to these two loadings are as shown in the figure below. If these two sets of loading are applied simultaneously, then the net normal component of stress $\sigma_{x x}$ is
\qquad —.

Loading-I
(A) $\frac{3 \sigma}{2}$
(B) $\sigma\left(1+\frac{1}{\sqrt{2}}\right)$
(C) $\frac{\sigma}{2}$
(D) $\sigma\left(1-\frac{1}{\sqrt{2}}\right)$

Ans. (A)
Sol.

$$
\begin{equation*}
\sigma_{x x}=\sigma+\sigma_{p} \tag{i}
\end{equation*}
$$

For loading II

$$
\begin{aligned}
\because \quad \sigma_{p} & =\left[\frac{\sigma_{x}+\sigma_{y}}{2}\right]+\left[\frac{\sigma_{x}-\sigma_{y}}{2}\right] \cos 2 \theta+\tau_{x y} \sin 2 \theta \\
& \sigma_{x}=0, \sigma_{y}=\sigma, \quad \tau_{x y}=0, \quad \theta=-45^{0}
\end{aligned}
$$

(negative sign of angle represents that the angle is measured with reference to x_{1} axis)
$\sigma_{p}=\left[\frac{0+6}{2}\right]+\left[\frac{0-\sigma}{2}\right] \cos 2(-45)+0$
$\sigma_{p}=\frac{\sigma}{2}+\left(\frac{-\sigma}{2}\right) \times 0$
$\sigma_{p}=\frac{\sigma}{2}$
From equation (i)
$\sigma_{x x}=\sigma+\sigma_{p}$
$\sigma_{x x}=\sigma+\frac{\sigma}{2}$
$\sigma_{x x}=\frac{3}{2} \sigma$
Hence, the correct option is (A).

Question 29

A rigid body in the $\mathbf{X}-\mathbf{Y}$ plane consists of two point masses (1 kg each) attached to the ends of two massless rods, each of 1 cm length, as shown in the figure. It rotates at 30 RPM counter-clockwise about the Z-axis passing through point O. A point mass of $\sqrt{2} \mathrm{~kg}$, attached to one end of a third massless rod, is used for balancing the body by attaching the free end of the rod to point O. The length of the third rod is \qquad cm.

(A) 1
(B) $\sqrt{2}$
(C) $\frac{1}{\sqrt{2}}$
(D) $\frac{1}{2 \sqrt{2}}$

Ans. (A)
Sol. Given :

$$
\begin{aligned}
& m_{1}=1 \mathrm{~kg} \\
& m_{2}=1 \mathrm{~kg}
\end{aligned}
$$

$r_{1}=1 \mathrm{~cm}$
$r_{2}=1 \mathrm{~cm}$

Balancing resultant force,
$\left(m_{b} r_{b}\right)^{2}=\left(m_{1} r_{1}\right)^{2}+\left(m_{2} r_{2}\right)^{2}$
$\left(\sqrt{2} \cdot r_{b}\right)^{2}=(1 \times 1)^{2}+(1 \times 1)^{2}$
$\sqrt{2} \cdot r_{b}=\sqrt{1+1}$
$r_{b}=\frac{\sqrt{2}}{\sqrt{2}}$
$r_{b}=1 \mathrm{~cm}$
Hence, the correct option is (A).

Question 30

A spring mass damper system (mass m, stiffness k, and damping coefficient c) excited by a force $(t)=B$ $\sin \omega t$, where B, ω and t are the amplitude, frequency and time, respectively, is shown in the figure. Four different responses of the system (marked as (i) to (iv)) are shown just to the right of the system figure. In the figures of the responses, A is the amplitude of response shown in red color and the dashed lines indicate
its envelope. The responses represent only the qualitative trend and those are not drawn to any specific scale.

(i)

(ii)

(iii)

(iv)

Four different parameter and forcing conditions are mentioned below.
(P) $c>0$ and $\omega=\sqrt{k / m}$
(Q) $c<0$ and $\omega \neq 0$
(R) $c=0$ and $\omega=\sqrt{k / m}$
(S) $c=0$ and $\omega \cong \sqrt{k / m}$

Which one of the following options gives correct match (indicated by arrow \rightarrow) of the parameter and forcing conditions to the responses?
(A) (P) \rightarrow (i), (Q) \rightarrow (iii), (R) \rightarrow (iv), (S) \rightarrow (ii)
(B) (P) \rightarrow (ii), (Q) \rightarrow (iii), (R) \rightarrow (iv), (S) \rightarrow (i)
(C) (P) \rightarrow (i), (Q) \rightarrow (iv), (R) \rightarrow (ii), (S) \rightarrow (iii)
(D) (P) \rightarrow (iii), (Q) \rightarrow (iv), (R) \rightarrow (ii), (S) \rightarrow (i)

Ans. (C)
Sol. (P) $c>0$ and $\omega=\sqrt{\frac{K}{m}}$

(Q) $c<0$ and $\omega \neq 0$

(R) $c=0$ and $\omega=\sqrt{\frac{K}{m}}$

A

(S) $c=0$ and $\omega \cong \sqrt{\frac{K}{m}}$

Hence, the correct option is (C).

Question 31

Parts P1-P7 are machined first on a milling machine and then polished at a separate machine. Using the information in the following table, the minimum total completion time required for carrying out both the operations for all 7 parts is \qquad hours.

Part	Milling (hours)	Polishing (hours)
P1	8	6
P2	3	2
P3	3	4
P4	4	6
P5	5	7
P6	6	4
P7	2	1

(A) 31
(B) 33
(C) 30
(D) 32

PAGE
38

Ans. (B)
Sol.

Part	Milling (hours)	Polishing (hours)
P1	8	6
P2	3	2
P3	3	4
P4	4	6
P5	5	7
P6	6	4
P7	2	1

According to Johnson's algorithm, optimum job sequence is,
$P 3 \rightarrow P 4 \rightarrow P 5 \rightarrow P 1 \rightarrow P 6 \rightarrow P 2 \rightarrow P 7$
Minimum total completion time:-

Part	Milling (hours)			Polishing (hours)		
	In time	Processing time	Out time	In time	Processing time	Out time
$P 3$	0	3	3	3	4	7
$P 4$	3	4	7	7	6	13
$P 5$	7	5	12	13	7	20
$P 1$	12	8	20	20	6	26
$P 6$	20	6	26	26	4	30
$P 2$	26	3	29	30	2	32
$P 7$	29	2	31	32	1	33

The minimum total completion time required for carrying out both the operations for all 7 parts is 33 hours.
Hence, the correct option is (B).

Question 32

A manufacturing unit produces two products P1 and P2. For each piece of P1 and P2, the table below provides quantities of materials $\mathrm{M} 1, \mathrm{M} 2$, and M 3 required, and also the profit earned. The maximum quantity available per day for M1, M2 and M3 is also provided. The maximum possible profit per day is Rs. \qquad .

	M1	M2	M3	Profit per piece (Rs.)
P1	2	2	0	150
P2	3	1	2	100
Maximum quantity available per day	70	50	40	

(A) 5000
(B) 4000
(C) 3000
(D) 6000

Ans. (B)
Sol.

	$M 1$	$M 2$	$M 3$	Profit per piece (Rs.)
$P 1$	2	2	0	150
$P 2$	3	1	2	100
Maximum quantity available per day	70	50	40	

$2 x+3 y \leq 70$
$2 x+y \leq 50$
$2 y \leq 40$
$Z=150 x+100 y$
From equation (i),
When $x=0$, then $y=\frac{70}{3} \Rightarrow$
(0,70/3)
$y=0$, then $x=35 \Rightarrow(35,0)$
From equation (ii)
When $x=0$ then $y=50 \Rightarrow(0,50)$
$y=0$, then $x=25 \Rightarrow(25,0)$
From equation (iii)

$$
y=40
$$

$(25,0)(35,0)$
$0 \leq 70$
$0 \leq 50$
$0 \leq 40$
Point B: Intersection of
$2 x+3 y \leq 70$
$2 y \leq 40$
$x=5$ and $y=20$
Point C: Intersection of
$2 x+3 y \leq 70$
$2 x+y \leq 50$
After solving, we get $x=20$ and $y=10$
From equation (iv)
$Z=150 x+100 y$
$Z_{A}=150(0)+100(20)=2000$
$Z_{B}=150(5)+100(20)=2750$
$Z_{C}=150(20)+100(10)=4000$
$Z_{D}=150(25)+100(0)=3750$
$Z_{\text {max }}=4000$ at $x=20$ and $y=0$
Hence, the correct option is (B).

Question 33

A tube of uniform diameter D is immersed in a steady flowing inviscid liquid stream of velocity V, as shown in the figure. Gravitational acceleration is represented by g. The volume flow rate through the tube is \qquad _.

PAGE

Free surface of the liquid stream
(A) $\frac{\pi}{4} D^{2} V$
(B) $\frac{\pi}{4} D^{2} \sqrt{2 g h_{2}}$
(C) $\frac{\pi}{4} D^{2} \sqrt{2 g\left(h_{1}+h_{2}\right)}$
(D) $\frac{\pi}{4} D^{2} \sqrt{V^{2}-2 g h_{2}}$

Ans. (D)
Sol.

From Bernoulli's equation (Point 1 to 2)
$\frac{P_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+Z_{1}=\frac{P_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+Z_{2}$
$\left\{\because A_{1}=A_{2} \& V_{1}=V_{2}\right\}$
$\frac{P_{1}}{\rho g}+Z_{1}=0+Z_{2}$
$P_{1}=\rho g\left(Z_{2}-Z_{1}\right)$
$=\rho g\left(h_{1}+h_{2}\right)$
$\because \quad$ from diagram, it is clear that $\left(Z_{2}-Z_{1}\right)=\left(h_{2}+h_{1}\right)$
$P_{0}=\rho g h_{1}$
$\frac{P_{0}}{\rho g}+\frac{V^{2}}{2 g}+Z_{0}=\frac{P_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+Z_{1}$
$\left\{\because Z_{0}=Z_{1}\right\}$
$\frac{\rho g h_{1}}{\rho g}+\frac{V^{2}}{2 g}=\frac{\rho g\left(h_{1}+h_{2}\right)}{\rho g}+\frac{V_{1}^{2}}{2 g}$
$h_{1}+\frac{V^{2}}{2 g}=h_{1}+h_{2}+\frac{V_{1}^{2}}{2 g}$
$\frac{V_{1}^{2}}{2 g}=h_{1}-h_{1}-h_{2}+\frac{V^{2}}{2 g}$
$\frac{V_{1}^{2}}{2 g}=\frac{V^{2}}{2 g}-h_{2}$
$V_{1}=\sqrt{V^{2}-2 g h_{2}}$
Now,
$Q=A V=\frac{\pi}{4} D^{2} \sqrt{V^{2}-2 g h_{2}}$
$\{\because A=$ Area $\}$
Hence, the correct option is (D).

Question 34

The steady velocity field in an inviscid fluid of density 1.5 is given to be $\vec{V}=\left(y^{2}-x^{2}\right) \hat{i}+(2 x y) \hat{j}$. Neglecting body forces, the pressure gradient at $(x=1, y=1)$ is \qquad .
(A) $10 \hat{j}$
(B) $20 \hat{i}$
(C) $-6 \hat{i}-6 \hat{j}$
(D) $-4 \hat{i}-4 \hat{j}$

Ans. (C)
Sol. $\vec{V}=\left(y^{2}-x^{2}\right) \hat{i}+(2 x y) \hat{j}$
$\because \quad \vec{F}_{g}+\vec{F}_{v}+\vec{F}_{p}=m \times a_{\text {total }}$
$0+0+\vec{F}_{p}=m \times a_{\text {total }}$
$-\nabla P+\rho g=\rho\left(\frac{d v}{d t}\right)$
$-\nabla_{P}=\rho\left[u \cdot \frac{\partial \vec{V}}{\partial x} \hat{i}+v \frac{\partial \vec{V}}{\partial y} \hat{j}\right]$
At $x=1, y=1$

$$
\begin{align*}
& a_{x}=u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+0+0 \\
& a_{x}=\left(y^{2}-x^{2}\right)(-2 x)+2 x y(2 y) \\
& a_{x}=4 \hat{i} \tag{ii}
\end{align*}
$$

And $a_{y}=u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+0+0$

$$
a_{y}=\left(y^{2}-x^{2}\right)(2 y)+2 x y(2 x)
$$

$a_{y}=2 \hat{j}$
From equation (i), (ii) and (iii)
$-\nabla P=\rho\left[u \frac{\partial \vec{V}}{\partial x} \hat{i}+v \frac{\partial \vec{V}}{\partial y} \hat{j}\right]$
$-\nabla P=\rho[4 \hat{i}+4 \hat{j}]$
$-\nabla P=1.5[4 \hat{i}+4 \hat{j}]$
$\nabla P=-6 \hat{i}-6 \hat{j}$
Hence, the correct option is (C).

Question 35

In a vapour compression refrigeration cycle, the refrigerant enters the compressor in saturated vapour state at evaporator pressure, with specific enthalpy equal to $250 \mathrm{~kJ} / \mathrm{kg}$. The exit of the compressor is superheated at condenser pressure with specific enthalpy equal to $300 \mathrm{~kJ} / \mathrm{kg}$. At the condenser exit, the refrigerant is throttled to the evaporator pressure. The coefficient of performance (COP) of the cycle is 3 . If the specific enthalpy of the saturated liquid at evaporator pressure is $50 \mathrm{~kJ} / \mathrm{kg}$, then the dryness fraction of the refrigerant at entry to evaporator is \qquad .
(A) 0.2
(B) 0.25
(C) 0.3
(D) 0.35

Ans. (B)
Sol.

From equation (i),

$$
\begin{aligned}
& 100=50+x(250-50) \\
& x=0.25
\end{aligned}
$$

Hence, the correct option is (B).

Question 36

\boldsymbol{A} is a 3×5 real matrix of rank 2 . For the set of homogeneous equations $\boldsymbol{A x}=\mathbf{0}$, where $\mathbf{0}$ is a zero vector and \boldsymbol{x} is a vector of unknown variables, which of the following is/are true?
(A) The given set of equations will have a unique solution.
(B) The given set of equations will be satisfied by a zero vector of appropriate size.
(C) The given set of equations will have infinitely many solutions.
(D) The given set of equations will have many but a finite number of solutions.

Ans. (B,C)
Sol. Given : A is a (3×5) real matrix,

$$
[A]_{3 \times 5} \Rightarrow \rho(A) \leq \min (3,5) \Rightarrow \rho(A) \leq 3
$$

Rank of matrix $\rho(A)=2$, that means there must be two linearly independent rows, also $|A|_{3 \times 3}=0$. It shows $[A]_{3 \times 3}$ will have non-trivial solution or infinitely many solutions. ($A X=0$, set of homogenous equation)
Hence, the correct option are (B) and (C).

Question 37

The lengths of members $B C$ and $C E$ in the frame shown in the figure are equal. All the members are rigid and lightweight, and the friction at the joints is negligible. Two forces of magnitude $Q>0$ are applied as shown, each at the mid-length of the respective member on which it acts.

Which one or more of the following members do not carry any load (force)?
(A) $A B$
(B) $C D$
(C) $E F$
(D) $G H$

Ans. (B,D)
Sol.
Question 38
If the sum and product of eigenvalues of a 2×2 real matrix $\left[\begin{array}{ll}3 & p \\ p & q\end{array}\right]$ are 4 and -1 respectively, then $|p|$ is \qquad (in integer).
Ans. 2
Sol. Given : Matrix of order, $[A]=\left[\begin{array}{ll}3 & p \\ p & q\end{array}\right]_{2 \times 2}$
Sum of eigen values $=4$
Product of eigen values $=-1$

As we know that,
Sum of eigen values $=$ Trace of matrix
and Product of eigen values $=$ Determinant of matrix

$$
\begin{aligned}
& \lambda_{1}+\lambda_{2}=3+q=4 \\
& q=4-3 \\
& q=1 \\
& \lambda_{1} \cdot \lambda_{2}=3 q-p^{2}=-1 \\
& 3 \times 1-p^{2}=-1 \\
& 3-p^{2}=-1 \\
& p^{2}=4 \\
& p= \pm 2 \\
& |p|=+2
\end{aligned}
$$

then,
Hence, the $|p|$ is 2.

Question 39

Given $z=x+i y, i=\sqrt{-1} . C$ is a circle of radius 2 with the centre at the origin. If the contour C is traversed anticlockwise, then the value of the integral $\frac{1}{2 \pi} \int_{C} \frac{1}{(z-i)(z+4 i)} d z$ is___ (round off to one decimal place).
Ans. 0.2
Sol. Given : Complex integration,

$$
I=\frac{1}{2 \pi} \int_{C} \frac{1}{(z-i)(z+4 i)} d z
$$

where, C is a circle of radius 2 and centre at the origin.

Complex function,

$$
f(z)=\frac{1}{(z-i)(z+4 i)}
$$

Poles are $z=i, z=-4 i$
We know that,

$$
\begin{aligned}
& I=2 \pi i \times[\text { Sum of all residues ww.r.t all the poles inside or on the closed contour }] \\
& \text { Res }(z=a)=\lim _{z \rightarrow a} f(z)(z-a) \\
& \text { Res }(z=-4 i)=0 \\
& \text { Res }(z=i)=\lim _{z \rightarrow i} \frac{1}{(z-i)(z+4 i)} \times(z-i)=\lim _{z \rightarrow i} \frac{1}{z+4 i} \\
& \text { Res }(z=i)=\frac{1}{i+4 i}=\frac{1}{5 i} \\
& I=\frac{1}{2 \pi} \times 2 \pi i \times \frac{1}{5 i} \\
& I=\frac{1}{5}=0.2
\end{aligned}
$$

Hence, the value of the integral is 0.2 .

Question 40

A shaft of length L is made of two materials, one in the inner core and the other in the outer rim, and the two are perfectly joined together (no slip at the interface) along the entire length of the shaft. The diameter of the inner core is d_{i} and the external diameter of the rim is d_{o}, as shown in the figure. The modulus of rigidity of the core and rim materials are G_{i} and G_{o}, respectively. It is given that $d_{o}=2 d_{i}$ and $G_{i}=3 G_{o}$. When the shaft is twisted by application of a torque along the shaft axis, the maximum shear stress developed in the outer rim and the inner core turn out to be τ_{o} and τ_{i}, respectively. All the deformations are in the elastic range and stress strain relations are linear. Then the ratio $\frac{\tau_{i}}{\tau_{o}}$ is \qquad (round off to 2 decimal places).

Ans. 1.5

Sol. Given:

$$
\begin{aligned}
& d_{0}=2 d_{j} \\
& G_{i}=3 G_{0}
\end{aligned}
$$

Core and Rim are perfectly joined (no slip)
$L=L_{i}=L_{0}$ and $\theta=\theta_{i}=\theta_{0}$
From Torsion equation,
$\frac{T}{J}=\frac{\tau}{r}=\frac{G \theta}{L}$
$\tau_{\text {max }}=\frac{G \theta}{L} \times r_{\text {max }}$
For core,
$\tau_{i}=\left(\tau_{\max }\right)_{\text {core }}=\frac{G_{i} \theta_{i}}{L_{i}} \times \frac{d_{i}}{2}$

$$
\begin{equation*}
=\frac{G_{i} \theta_{i} d_{i}}{2 L_{i}} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{0}=\left(\tau_{\max }\right)_{R i n}=\frac{G_{0} \theta_{0} d_{0}}{2 L_{0}} \tag{ii}
\end{equation*}
$$

From equation (i) \& (ii)
$\frac{\tau_{i}}{\tau_{0}}=\frac{\frac{G_{i} \theta_{i} d_{i}}{2 L_{i}}}{\frac{G_{0} \theta_{0} d_{0}}{2 L_{0}}}$
$\frac{\tau_{i}}{\tau_{0}}=\frac{G_{i} \theta_{i} d_{i}}{2 L_{i}} \times \frac{2 L_{0}}{G_{0} \theta_{0} d_{0}}$
$\frac{\tau_{i}}{\tau_{0}}=\frac{3 G_{0} \times \theta d_{i}}{2 L} \times \frac{2 L}{G_{0} \times \theta \times 2 d_{i}}$
$\frac{\tau_{i}}{\tau_{0}}=\frac{3 \times 2}{2 \times 2}=\frac{6}{4}$
$\frac{\tau_{i}}{\tau_{0}}=1.5$

Hence, the ratio $\frac{\tau_{i}}{\tau_{o}}$ is 1.5 .

Question 41

A rigid beam $A D$ of length $3 a=6 \mathrm{~m}$ is hinged at frictionless pin joint A and supported by two strings as shown in the figure. String $B C$ passes over two small frictionless pulleys of negligible radius. All the strings are made of the same material and have equal cross-sectional area. A force $F=9 \mathrm{kN}$ is applied at C and the resulting stresses in the strings are within linear elastic limit. The self-weight of the beam is negligible with respect to the applied load. Assuming small deflections, the tension developed in the string at C is \qquad kN (round off to 2 decimal places).

PAGE
48

Ans. 1.5
Sol.

$\Sigma M_{0}=0$
$T_{1} \times 3 a+T_{2} \times 2 a+T_{2} \times a-9000 \times 2 a=0$
$3 T_{1}+3 T_{2}-1800=0$
$T_{1}+T_{2}=6000$

$\frac{\delta_{C}}{3 a}=\frac{\delta_{B}}{2 a}=\frac{\delta_{a}}{a}$
$\delta_{C}=3 \delta_{a}$
$\delta_{B}=2 \delta_{a}$
$\delta_{1}=\delta_{C}$
$\delta_{2}=\delta_{a}+\delta_{B}$

$$
\left[\because \delta=\frac{P L}{A E}\right]
$$

$$
\frac{T_{2} \times 3 a}{A E}=\delta_{a}+2 \delta_{a}
$$

$\frac{T_{2} \times 3 a}{A E}=3 \delta_{a}$
$\delta_{a}=\frac{T_{2} a}{A E}$
We know,
$\delta_{1}=\delta_{C}$
$\frac{T_{1} a}{A E}=3 \delta_{a}$
$\delta_{a}=\frac{T_{1} a}{3 A E}$
Equating eq. (2) \& (3)
$\frac{T_{2} a}{A E}=\frac{T_{1} a}{3 A E}$
$T_{1}=3 T_{2}$
Putting the value of T_{1} in equation (i)
$T_{1}+T_{2}=6000$
$3 T_{2}+T_{2}=6000$
$4 T_{2}=6000$
$T_{2}=\frac{6000}{4}$
$T_{2}=1500 \mathrm{~N}$
$T_{2}=1.5 \mathrm{kN}$
Hence, the tension developed in the string at C is 1.5 kN .

Question 42

In the configuration of the planar four-bar mechanism at a certain instant as shown in the figure, the angular velocity of the 2 cm long link is $\omega_{2}=5 \mathrm{rad} / \mathrm{s}$. Given the dimensions as shown, the magnitude of the angular velocity ω_{4} of the 4 cm long link is given by \qquad rad/s (round off to 2 decimal places).

Ans. 1.25
Sol.

$$
\begin{aligned}
\because \quad & \omega_{4}\left(I_{24} I_{14}\right)=\omega_{2}\left(I_{24} I_{12}\right) \\
& \omega_{4} \times 8=5 \times 2 \\
& \omega_{4}=1.25 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Hence, the magnitude of the angular velocity ω_{4} of the 4 cm long link is given by $1.25 \mathrm{rad} / \mathrm{sec}$.

Question 43

A shaft $A C$ rotating at a constant speed carries a thin pulley of radius $r=0.4 \mathrm{~m}$ at the end C which drives a belt. A motor is coupled at the end A of the shaft such that it applies a torque M_{z} about the shaft axis without causing any bending moment. The shaft is mounted on narrow frictionless bearings at A and B where $A B=B C=L=0.5 \mathrm{~m}$. The taut and slack side tensions of the belt are $T_{1}=300 \mathrm{~N}$ and $T_{2}=100 \mathrm{~N}$, respectively. The allowable shear stress for the shaft material is 80 MPa . The self-weights of the pulley and the shaft are negligible. Use the value of π available in the on-screen virtual calculator. Neglecting shock and fatigue loading and assuming maximum shear stress theory, the minimum required shaft diameter is \qquad mm (round off to 2 decimal places).

Ans. 23.60 to 24.20
Sol.

Twisting moment is given by,

$$
\begin{aligned}
& M_{z}=T_{\max }=\left(T_{1}-T_{2}\right) r \\
&=(300-100) \times 0.4 \\
&= 80 \mathrm{Nm}=80 \times 10^{3} \mathrm{~N} . \mathrm{mm} \\
& T_{\max }=80 \mathrm{Nm}
\end{aligned}
$$

200 Nm
Taking moment about point A
$\Sigma M_{A}=0$

$$
\begin{aligned}
& R_{B}(0.5)=400 \times 2 \times 0.5 \\
& R_{B}=800 \mathrm{~N}(\uparrow) \\
& \Sigma V=0 \\
& R_{A}=400(\uparrow)
\end{aligned}
$$

According to maximum shear stress theory,
$\frac{16}{r d^{3}} \sqrt{M_{\text {max }}^{2}+T_{\text {max }}^{2}}=\frac{S_{y s}}{F O S} \quad\left[\because S_{y s}=80 \mathrm{MPa}\right]$
$\frac{16}{r d^{3}} \sqrt{\left(200 \times 10^{3}\right)^{2}+\left(80 \times 10^{3}\right)^{2}}=\frac{80}{1}$
$d=23.9357 \mathrm{~mm}$
Hence, the minimum required shaft diameter is 23.9357 mm .

Question 44

PAGE

A straight-teeth horizontal slab milling cutter is shown in the figure. It has 4 teeth and diameter (D) of 200 mm . The rotational speed of the cutter is 100 rpm and the linear feed given to the workpiece is 1000 $\mathrm{mm} /$ minute. The width of the workpiece (w) is 100 mm , and the entire width is milled in a single pass of the cutter. The cutting force/tooth is given by $F=K t_{c} w$, where specific cutting force $K=10 \mathrm{~N} / \mathrm{mm}^{2}$, w is the width of cut, and t_{c} is the uncut chip thickness.
The depth of cut (d) is $D / 2$, and hence the assumption of $\frac{d}{D} \ll 1$ is invalid. The maximum cutting force required is \qquad kN (round off to one decimal place).

Ans. 2.3 to 2.7

Sol. Given:

Number of teeths $(n)=4$
Diameter of cutter $(D)=200 \mathrm{~mm}$
Rotational speed $(N)=100 \mathrm{rpm}$
Width of workpiece $(w)=100 \mathrm{~mm}$
Depth of cut $(d)=\frac{D}{2}$
Feed $(f)=\frac{1000}{100}=10 \mathrm{~mm} / \mathrm{rev}$

Maximum uncut chip thickness is given by,

$$
\begin{aligned}
& \left(t_{c}\right)_{\max }=\frac{2 f}{n} \sqrt{\frac{d}{D}\left(1-\frac{d}{D}\right)} \\
& =\frac{2 \times 10}{4} \sqrt{\frac{D / 2}{D}\left(1-\frac{D / 2}{D}\right)} \\
& =5 \sqrt{\frac{1}{2}\left(1-\frac{1}{2}\right)} \\
& =5 \times \frac{1}{2} \\
& =2.5 \mathrm{~mm}
\end{aligned}
$$

Maximum force is given by, $F_{\text {max }}=k\left(t_{c}\right)_{\text {max }} w$

$$
\begin{aligned}
& =10 \times 2.5 \times 100 \\
& =2500 \mathrm{~N} \\
& =2.5 \mathrm{kN}
\end{aligned}
$$

Hence, the maximum cutting force required is 2.5 kN .

Question 45

In an orthogonal machining operation, the cutting and thrust forces are equal in magnitude. The uncut chip thickness is 0.5 mm and the shear angle is 15°. The orthogonal rake angle of the tool is 0° and the width of cut is 2 mm . The workpiece material is perfectly plastic and its yield shear strength is 500 MPa . The cutting force is \qquad N (round off to the nearest integer).
Ans. 2732.05
Sol. Given :
Thickness of chip $(t)=0.5 \mathrm{~mm}$
Shear angle $(\phi)=15^{0}$
rake angle $(\alpha)=0^{0}$
Width of cut $(b)=2 \mathrm{~mm}$
Yield shear strength $\left(\tau_{s}\right)=500 \mathrm{MPa}$
$\because \quad$ Cutting force $=$ thrust force
then

$$
\begin{aligned}
F_{S} & =\frac{\tau b t}{\sin \phi}=F_{C} \cos (\phi)-F_{T} \sin (\phi) \\
F_{C} & =\frac{\tau b t}{\sin \phi(\cos \phi-\sin \phi)} \\
& =\frac{500 \times 2 \times 0.5}{\sin 15^{\circ}\left(\cos 15^{0}-\sin 15^{0}\right)}=2732.05 \mathrm{~N}
\end{aligned}
$$

Hence, the cutting force is 2732.05 N .

Question 46

The best size wire is fitted in a groove of a metric screw such that the wire touches the flanks of the thread on the pitch line as shown in the figure. The pitch (p) and included angle of the thread are 4 mm and 60°, respectively. The diameter of the best size wire is \qquad mm (round off to 2 decimal places).

Ans. 2.31
Sol. Given :
Pitch $(P)=4 \mathrm{~mm}$
Included angle $=(2 \alpha)=60^{\circ}$
So, the best wire size

$$
\begin{aligned}
& d \omega=\frac{P}{2} \sec \alpha \\
& d \omega=\frac{4}{2} \sec (30) \\
& d \omega=2.31 \mathrm{~mm}
\end{aligned}
$$

Hence, the diameter of the best size wire is 2.31 mm .

Question 47

In a direct current arc welding process, the power source has an open circuit voltage of 100 V and short circuit current of 1000 A . Assume a linear relationship between voltage and current. The arc voltage (V) varies with the arc length (l) as $V=10+5 l$, where V is in volts and l is in mm . The maximum available arc power during the process is \qquad kVA (in integer).
Ans. 25
Sol. Given :
Open Circuit Voltage $\left(V_{O C}\right)=100 \mathrm{~V}$
Short Circuit Current $\left(I_{S C}\right)=1000 \mathrm{~A}$
Here,

$$
V=10+5 l
$$

For maximum power

$$
\begin{aligned}
& V_{A r c}=\frac{V_{O C}}{2} \\
& I_{a r c}=\frac{I_{S C}}{2}
\end{aligned}
$$

So,
Maximum Power P,

$$
\begin{aligned}
P & =V_{a r c} \times I_{a r c} \\
& =\frac{V_{O C}}{2} \times \frac{I_{O C}}{2} \\
& =\frac{100}{2} \times \frac{1000}{2} \\
& =50 \times 500 \\
& =25000 \mathrm{VA} \\
& =25 \mathrm{kVA}
\end{aligned}
$$

Hence, the maximum available power during the process is 25 kVA .

Question 48

A cylindrical billet of 100 mm diameter and 100 mm length is extruded by a direct extrusion process to produce a bar of L-section. The cross sectional dimensions of this L-section bar are shown in the figure. The total extrusion pressure (p) in MPa for the above process is related to extrusion ratio (r) as

$$
p=K_{s} \sigma_{m}\left[0.8+1.5 \ln (r)+\frac{2 l}{d_{0}}\right],
$$

where σ_{m} is the mean flow strength of the billet material in MPa, l is the portion of the billet length remaining to be extruded in mm, d_{0} is the initial diameter of the billet in mm , and K_{s} is the die shape factor.
If the mean flow strength of the billet material is 50 MPa and the die shape factor is 1.05 , then the maximum force required at the start of extrusion is \qquad kN (round off to one decimal place).

Ans. 2429.201
Sol. $A_{f}=60 \times 10=1000 \mathrm{~mm}^{2}$
$A_{D}=\frac{\pi}{4} D^{2}=\frac{\pi}{4} \times 100^{2}=7853.98 \mathrm{~mm}^{2}$
$r=\frac{A_{o}}{A_{f}}=7.853$
$p=1.05 \times 50\left[0.8+1.5 \times \ln (7.853)+2 \times \frac{100}{100}\right]$
$f=p \times A_{o}=309.53 \times \frac{\pi}{4} \times 100^{2}$
$=2429201.415 \mathrm{~N}$
$f=2429.201 \mathrm{kN}$
Hence, the maximum force required at the start of extrusion is 2429.201 kN .

Question 49

A project consists of five activities $(A, B, C, D$ and E). The duration of each activity follows beta distribution. The three time estimates (in weeks) of each activity and immediate predecessor(s) are listed in the table. The expected time of the project completion is \qquad weeks (in integer).

Activity	Time estimates (in weeks)			Immediate predecessor(s)
	Optimistic time	Most likely time	Pessimistic time	
A	4	5	6	A
B	1	3	5	A
C	1	2	3	C
D	2	4	6	B, D
E	3	4	5	

Ans. 15
Sol.

Activity	Time estimates (in weeks)			Immediate predecessor(s)
	Optimistic time $\left(\boldsymbol{t}_{\boldsymbol{o}}\right)$	Most likely time $\left(\boldsymbol{t}_{\boldsymbol{m}}\right)$	Pessimistic time $\left(\boldsymbol{t}_{\boldsymbol{p}}\right)$	
A	4	5	6	None
B	1	3	5	A
C	1	2	3	A
D	2	4	6	C
E	3	4	5	$\mathrm{~B}, \mathrm{D}$

We know that,
Expected time, $T_{E}=\frac{t_{o}+4 t_{m}+t_{p}}{6}$
Therefore,

Activity	Time estimates (in weeks)			Immediate predecessor(s)	$\boldsymbol{T}_{\boldsymbol{E}}$
	$\left(\boldsymbol{t}_{\boldsymbol{o}}\right)$	$\left(\boldsymbol{t}_{\boldsymbol{m}}\right)$	$\left(\boldsymbol{t}_{\boldsymbol{p}}\right)$		
A	4	5	6	None	5
B	1	3	5	A	3
C	1	2	3	A	2
D	2	4	6	C	4
E	3	4	5	B, D	4

Projected completion time $=5+2+4+4$

$$
=15
$$

Hence, the expected time of the project completion is 15 weeks.

Question 50

A rigid tank of volume of $8 \mathrm{~m}^{3}$ is being filled up with air from a pipeline connected through a valve. Initially the valve is closed and the tank is assumed to be completely evacuated. The air pressure and temperature inside the pipeline are maintained at 600 kPa and 306 K , respectively. The filling of the tank begins by opening the valve and the process ends when the tank pressure is equal to the pipeline pressure. During the filling process, heat loss to the surrounding is 1000 kJ . The specific heats of air at constant pressure and at constant volume are $1.005 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$ and $0.718 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$, respectively. Neglect changes in kinetic energy and potential energy.
The final temperature of the tank after the completion of the filling process is \qquad K (round off to the nearest integer).
Ans. 395.39
Sol.

Unsteady flow energy equation :

$$
\frac{d U}{d t}=\dot{m}_{i} h_{i}-\dot{m}_{e} h_{e}+\dot{Q}-\dot{W}
$$

$\because \quad\left(\dot{m}_{e}=0\right.$ and $\left.\dot{W}=0\right)$
We know, $\frac{d m}{d t}=\dot{m}_{i}-\dot{m}_{e}$

$$
\begin{array}{ll}
& \frac{d m}{d t}=\dot{m}_{i} \quad\left(\because \dot{m}_{e}=0\right) \\
\therefore \quad & \frac{d U}{d t}=\frac{d m}{d t} h_{i}+(-1000) \\
& m_{2} u_{2}-m_{1} u_{1}=\left(m_{2}-m_{1}\right) h_{i}-1000 \\
& m_{2} u_{2}=m_{2} h_{i}-1000 \quad\left(m_{1}=0, \text { because initially evacuated }\right) \\
& u_{2}=h_{i}-\frac{1000}{m_{2}} \\
& C_{V} T_{F}=C_{P} T_{i}-\frac{1000}{m_{2}} \\
\because \quad & m_{2}=\frac{P_{2} V_{2}}{R T_{2}} \\
\therefore \quad & C_{V} T_{F}=C_{P} T_{i}-\frac{1000}{P_{2} V_{2}} \times R T_{2} \\
& 0.718 T_{F}=1.005 \times 306-\frac{1000}{600 \times 8} \times 0.287 \times T_{F} \quad\left(\because T_{2}=T_{F}\right) \\
& T_{F}=395.389 \mathrm{~K} \simeq 395.39 \mathrm{~K}
\end{array}
$$

Hence, the final temperature of the tank after the completion of the filling process is 395.39 K .

Question 51

At steady state, $500 \mathrm{~kg} / \mathrm{s}$ of steam enters a turbine with specific enthalpy equal to $3500 \mathrm{~kJ} / \mathrm{kg}$ and specific entropy equal to $6.5 \mathrm{~kJ} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}$. It expands reversibly in the turbine to the condenser pressure. Heat loss occurs reversibly in the turbine at a temperature of 500 K . If the exit specific enthalpy and specific entropy are $2500 \mathrm{~kJ} / \mathrm{kg}$ and $6.3 \mathrm{~kJ} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}$, respectively, the work output from the turbine is \qquad MW (in integer).
Ans. 450
Sol.

Applying steady flow energy equation,

$$
\begin{align*}
& h_{1}+\frac{v_{1}^{2}}{2000}+\frac{g z_{1}}{1000}+d Q=h_{2}+\frac{v_{2}^{2}}{2000}+\frac{g z_{2}}{1000}+d w \\
& d w=\left(h_{1}-h_{2}\right)+d Q \tag{i}\\
& \left(\because v_{1}=0, v_{2}=0, z_{1}=z_{2}\right)
\end{align*}
$$

We know,
Power $(P)=\dot{m}(d w)$

$$
\begin{equation*}
P=\dot{m}\left[\left(h_{1}-h_{2}\right)+d Q\right] \tag{ii}
\end{equation*}
$$

Since, reversible heat transfer,

$$
\begin{aligned}
& \left(s_{2}-s_{1}\right)=\frac{d Q}{T} \\
& d Q=T\left(s_{2}-s_{1}\right) \\
& d Q=500(6.3-6.5) \\
& d Q=-100 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

By putting in equation (ii),

$$
\begin{aligned}
& P=500[(3500-2500)-100] \\
& P=450000 \mathrm{~kW} \\
& P=450 \mathrm{MW}
\end{aligned}
$$

Hence, the work output from the turbine is 450 MW .

Question 52

A uniform wooden rod (specific gravity $=0.6$, diameter $=4 \mathrm{~cm}$ and length $=8 \mathrm{~m}$) is immersed in the water and is hinged without friction at point A on the waterline as shown in the figure. A solid spherical ball made of lead (specific gravity $=11.4$) is attached to the free end of the rod to keep the assembly in static equilibrium inside the water. For simplicity, assume that the radius of the ball is much smaller than the length of the rod.
Assume density of water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and $\pi=3.14$.
Radius of the ball is \qquad cm (round off to 2 decimal places).

Ans. 3.61

Sol. Given
Specific gravity of wooden $\operatorname{rod}\left(S_{1}\right)=0.6$
Diameter of the $\operatorname{rod}\left(D_{1}\right)=4 \mathrm{~cm} \Rightarrow \mathrm{r}_{1}=2 \mathrm{~cm}$

Length of $\operatorname{rod}(l)=8 \mathrm{~m}$
Specific gravity of spherical ball $\left(S_{2}\right)=11.4$

Weight of the rod $W_{1}=\rho_{1} g \pi r_{1}^{2} l$
Weight of the sphere ball $W_{2}=\rho_{2} g \frac{4}{3} \pi r_{2}^{3}$
Where,
$r_{1}=$ radius of rod
$r_{2}=$ radius of sphere
Buoyant force $=\rho_{F} g V_{F d}=\rho_{F} g\left[\pi r_{1}^{2} l+\frac{4}{3} \pi r_{2}^{3}\right]$
$\sum M_{A}=0 \quad$ For equilibrium
$W_{1} x+W_{2}(2 x)=F_{B_{1}} \times x+F_{B_{2}} \times 2 x$
$\rho_{1} g \pi r_{1}^{2} l+2 \rho_{2} g \frac{4}{3} \pi r_{2}^{3}=\rho_{W} g\left[\pi r_{1}^{2} l+\frac{4}{3} \pi r_{2}^{3} \times 2\right]$
$S_{1} \pi l r_{1}^{2}+2 S_{2} g \frac{4}{3} \pi r_{2}^{3}=\pi r_{1}^{2} l+\frac{4}{3} \pi r_{2}^{3} \times 2$
$2 S_{2} g \frac{4}{3} \pi r_{2}^{3}-2 \times \frac{4}{3} \pi r_{2}^{3}=\pi r_{1}^{2} l-S_{1} \pi l r_{1}^{2} \quad\left[S_{1}=\frac{\rho_{1}}{\rho_{w}}\right.$ and $\left.S_{2}=\frac{\rho_{2}}{\rho_{w}}\right]$
$\left(2 S_{2}-2\right) \frac{4}{3} r_{2}^{3}=\left(1-S_{1}\right) r_{1}^{2} l$
$(2 \times 11.2-2) \frac{4}{3} r_{2}^{3}=(1-0.6) \times 8 \times(0.02)^{2}$
$r_{2}=0.03610 \mathrm{~m}$
$r_{2}=3.61 \mathrm{~cm}$
Hence, the radius of the ball is 3.61 cm .

Question 53

Consider steady state, one-dimensional heat conduction in an infinite slab of thickness $2 L$ ($L=1 \mathrm{~m}$) as shown in the figure. The conductivity (k) of the material varies with temperature as $k=C T$, where T is the temperature in K, and C is a constant equal to $2 \mathrm{~W} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~K}^{-2}$. There is a uniform heat generation of 1280
$\mathrm{kW} / \mathrm{m}^{3}$ in the slab. If both faces of the slab are maintained at 600 K , then the temperature at $x=0$ is
\qquad K (in integer).

Ans. 990 to 1010
Sol. Given data

Thickness of slab $2 \mathrm{~L}(\mathrm{~L}=1 \mathrm{~m})$
$k=C T$,
Where
$C=2 \mathrm{Wm}^{-1} \mathrm{~K}^{-2}$
Uniform heat generation $(q)=1280 \mathrm{~kW} / \mathrm{m}^{3}$
Temperature of the slab $(T)=600 \mathrm{~K}$
Steady state, one dimensional heat conduction
$\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)=-q$
On integrating
$k \frac{d T}{d x}=-q x+C_{1}$
$2 T \frac{d T}{d x}=-q x+C_{1}$
$T d T=\left[\frac{-q x+C_{1}}{2}\right] d x$
On integrating,
$\frac{T^{2}}{2}=\frac{1}{2}\left[-\frac{q x^{2}}{2}+C_{1} x\right]+C_{2}$
Boundary condition:
At $x=\mathrm{L}=1 \mathrm{~m} \quad \Rightarrow \mathrm{~T}=600 \mathrm{~K}$

Put the value in equations (i)
$600^{2}=\frac{-1280 \times 10^{3} \times 1^{2}}{2}+C_{1} \times 1+C_{2}$
$\Rightarrow C_{1}+C_{2}=10^{6}$
At $x=-L=-1 \quad \Rightarrow T=600 \mathrm{~K}$
$600^{2}=\frac{-1280 \times 10^{3} \times(-1)^{2}}{2}+C_{1} \times(-1)+C_{2}$
$\Rightarrow-C_{1}+C_{2}=10^{6}$
By equations (ii) and (iii) we get,
$C_{1}=0$
$C_{2}=10^{6}$
By so equations (i) we get
$T^{2}=\frac{-q x^{2}}{2}+C_{2}$
At $x=0$
$[T(0)]^{2}=C_{2}$
$[T(0)]=\sqrt{C_{2}}=\sqrt{10^{6}}$
$T=10^{3}=1000 \mathrm{~K}$
$T_{x=0}=1000 \mathrm{~K}$
Hence, the temperature at $x=0$ is 1000 K .

Question 54

Saturated vapor at $200^{\circ} \mathrm{C}$ condenses to saturated liquid at the rate of $150 \mathrm{~kg} / \mathrm{s}$ on the shell side of a heat exchanger (enthalpy of condensation $h_{f g}=2400 \mathrm{~kJ} / \mathrm{kg}$). A fluid with $c_{p}=4 \mathrm{~kJ} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}$ enters at $100{ }^{0} \mathrm{C}$ on the tube side. If the effectiveness of the heat exchanger is 0.9 , then the mass flow rate of the fluid in the tube side is \qquad kg / s (in integer).
Ans. 1000
Sol.

$$
\begin{aligned}
& \varepsilon=0.9 \\
& \dot{m}_{\text {cond }}=150 \mathrm{~kg} / \mathrm{sec} \\
& h_{f g}=\text { Latent heat of vapourisation }=2400 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Heat released $=\dot{m}_{\text {cond }} \times h_{f g}$
Heat released $=150 \times 2400$
$\because \quad$ Heat released $=$ Heat absorbed by cold fluid.

$$
\begin{equation*}
150 \times 2400=m_{C F} \times\left(c_{p}\right)_{C F} \times\left(T_{F}-T_{i}\right) \tag{i}
\end{equation*}
$$

We know that, for condensation :
ΔT for condensing fluid $\rightarrow 0$

$$
\dot{m} c \rightarrow \infty
$$

Therefore, for cold fluid $\rightarrow(\dot{m} C)$ will be minimum.

$$
\begin{aligned}
\therefore \quad 0.9 & =\frac{T_{C_{e}}-T_{C_{i}}}{T_{h_{i}}-T_{C_{i}}} \\
0.9 & =\frac{T_{C_{e}}-100}{200-100} \\
T_{C_{e}} & =190
\end{aligned}
$$

From equation (i),

$$
\begin{array}{ll}
150 \times 2400=\dot{m}_{C F} \times 4 \times(190-100) & \left(\because T_{F}=T_{C_{e}} \text { and } T_{i}=T_{C_{i}}\right) \\
\dot{m}_{C F}=1000 \mathrm{~kg} / \mathrm{sec} &
\end{array}
$$

Hence, the mass flow rate of the fluid in the tube side is $1000 \mathrm{~kg} / \mathrm{s}$.

Question 55

Consider a hydrodynamically and thermally fully-developed, steady fluid flow of $1 \mathrm{~kg} / \mathrm{s}$ in a uniformly heated pipe with diameter of 0.1 m and length of 40 m . A constant heat flux of magnitude $15000 \mathrm{~W} / \mathrm{m}^{2}$ is imposed on the outer surface of the pipe. The bulk-mean temperature of the fluid at the entrance to the pipe is $200{ }^{\circ} \mathrm{C}$. The Reynolds number (Re) of the flow is 85000 , and the Prandtl number (Pr) of the fluid is 5. The thermal conductivity and the specific heat of the fluid are $0.08 \mathrm{~W} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~K}^{-1}$ and $2600 \mathrm{~J} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}$, respectively. The correlation $N u=0.023 \operatorname{Re}^{0.8} \operatorname{Pr}^{0.4}$ is applicable, where the Nusselt Number $(N u)$ is defined on the basis of the pipe diameter. The pipe surface temperature at the exit is \qquad ${ }^{0} \mathrm{C}$ (round off to the nearest integer).
Ans. 321.267
Sol. Given
Entrance temp (T_{b} inlet) $200^{\circ} \mathrm{C}$
Reynold number $\left(R_{e}\right)=85000$
Prandtl number $\left(p_{r}\right)=5$
Thermal conductivity $(K)=0.08 \mathrm{Wm}^{-1} \mathrm{~K}-1$
Specific heat of the fluid $\left(C_{p}\right)=2600 \mathrm{~J} \cdot \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
Heat flux $\left(q^{\prime \prime}\right)=15000 \mathrm{~W} / \mathrm{m}^{2}$

PAGE

Diameter of pipe $(D)=0.1 \mathrm{~m}$
Length of the pipe $(L)=40 \mathrm{~m}$
Fluid flow of mass $(m)=1 \mathrm{~kg} / \mathrm{s}$

To get T_{b} exit

$$
\begin{aligned}
& \quad \begin{array}{l}
q " \times \pi D L=m_{f} \times C_{p} \quad\left(T_{b} \text { exit }-T_{b} \text { inlet }\right) \\
15000 \times \pi \times 0.1 \times 40 \quad=1 \times 2600 \times\left(T_{b} \text { exit }-200\right) \\
T_{b} \text { exit }=272.498^{0} C
\end{array} \\
& \text { Nusselt number, } N u=\frac{h D}{k}=0.023 \mathrm{Re}^{0.8} \mathrm{Pr}^{0.4}
\end{aligned}
$$

So,

$$
\begin{aligned}
& \frac{h \times 0.1}{0.08}=0.023 \times(85000)^{0.8} \times 5^{0.4} \\
& h=307.5678 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}
\end{aligned}
$$

Now for T_{W} wall temperature
By newton's law of cooling

$$
\begin{aligned}
& q^{\prime \prime}=h\left(\mathrm{~T}_{W} \text { exit }-T_{b} \text { exit }\right) \\
& 15000=307.567\left(T_{W} \text { exit }-272.498\right) \\
& T_{W} \text { exit }=\frac{15000}{307.567}+272.498 \\
& T_{W} \text { exit }=321.267^{0} \mathrm{C}
\end{aligned}
$$

Hence, the pipe surface temperature at the exit is $321.267^{\circ} \mathrm{C}$.

