PAGE	GATE 2023 [Afternoon Sess	sion]									
1	Electronics & Communication Enginee	ring GATE ACADEMY°									
	General Ap	otitude Part									
	Q.1 to Q.5 Carry	One Mark Each									
Ques	tion 1	General Aptitude : Verbal Ability									
	"I cannot support this proposal. My will	not permit it."									
	(A) conscious	(B) consensus									
A me	(C) conscience	(D) consent									
ANS.											
Sol.	Given :	111 A 14 14									
	I cannot support this proposal. My <u>conscience</u> will not permit it.										
	Conscious : Aware of and responding to one's surroundings awake.										
	Consensus : A general agreement										
	behavior	is acting as a guide to the rightness or wrongness of one s									
	Consent • Permission for something to happen	or agreement to do something as per the meanings of all									
	wards the correct word which could be used is co	onscience by which the statement will be meaningful.									
	Hence, the correct option is (C).										
Ques	tion 2	General Aptitude : Verbal Ability									
•	Courts : : : Parliament : Legislature.										
	(by word meaning)										
	(A) Judiciary	(B) Executive									
	(C) Governmental	(D) Legal									
Ans.	(A)	GATE									
Sol.	Given :										
	Parliament is related to legislature in a special m	anner as parliament is legislative body. In the same way									
	courts is related to judiciary as courts are judicia	ry body.									
-	Hence, the correct option is (A).										
Ques	tion 3	General Aptitude : Numerical Ability									
	What is the smallest number with distinct digits	whose digits adds up to 45?									
	(A) 123555789	(B) 123457869									
A	(C) 123456789	(D) 99999									
ANS.											
Sol.	Given :	1									
	The smallest number with distinct digits whose c	digits adds up to 45									
	(A) 99999, the digits of this number are not dis (D) $1224578(0)$ the digits of this member are d	stinct, so it is not correct.									
	(B) $12345/869$, the digits of this number are di (C) 123456780 the digits of this number are di	istinct, so it is correct.									
	(C) 123430789, the digits of this number are μ	ot distinct, so it is not correct									
	(D) 12555767, the digits of this number are no	or distinct, so it is not contect.									
	** To Unlock All Courses of GATE/	ESE/AE-JE Use Code "GA1111". **									

PAGE GATE 2023 [Afternoon Session]

3 Electronics & Communication Engineering

Sol. In rectangle, *ABCD* there are 9 rectangles. *AGIF*, *GBEI*, *IECH*, *FIHD*, *ABEF*, *FECD*, *AGHD*, *GBCH* and *GBCH*. One more rectangles is *JKLM*. Therefore, there are total 10 rectangles.

Hence, the correct option is (C).

Q.6 to Q.10 Carry Two Marks Each

Question 6

General Aptitude : Verbal Ability

🝸 unacademy

📤 GATE ACADEN

Forestland is a planet inhabited by different kinds of creatures. Among other creatures, it is populated by animals all of whom are ferocious. There are also creatures that have claws, and some that do not. All creatures that have claws are ferocious.

Based only on the information provided above, which one of the following options can be logically inferred with certainty?

- (A) All creatures with claws are animals.
- (B) Some creatures with claws are non-ferocious.
- (C) Some non-ferocious creatures have claws.
- (D) Some ferocious creatures are creatures with claws.

Ans. (D)

Sol. Given :

Forestland is a planet inhabited by different kinds of creatures. Among other creatures, it is populated by animals all of whom are ferocious. There are also creatures that have claws, and some that do not. All creatures that have claws are ferocious.

Option (A) cannot be inferred as, it is not necessary condition that all creature with claws are animals.

Option (B) cannot be inferred as, all creatures that have claws are ferocious is given in the passage.

Option (C) can also not be inferred as, all creatures that have claws are ferocious is given in the passage. Option (D) can be inferred certainly as, "There are also creatures that have claws, and some that do not. All creatures that have claws are ferocious." Is mention in the passage. From this we can conclude some ferocious creatures are creatures with claws.

Hence, the correct option is (D).

Question 7

General Aptitude : Numerical Ability

Which one of the following options represents the given graph?

As mentioned in the given passage "when I was a kit" it clearly indicates that it is an adult's memory of what he or she liked as child by which option (B) can be inferred.

Hence, the correct option is (B).

Question 9

General Aptitude : Numerical Ability

Out of 1000 individuals in the town, 100 unidentified individuals are covid positive. Due to lack of adequate covid-testing kits, the health authorities of the town devised a strategy to identify these covid positive individuals. The strategy is to :

- (i) Collect saliva sample from all 1000 individual and randomly group them into sets of 5.
- (ii) Mix the samples within each set and test the mixed sample for covid.

PAGE	GATE 2023 [Afternoon Sess	ion]		🚬 un	academy						
5	Electronics & Communication Engineer	ring	Á	GAT	E ACADEMY [®]						
	 (iii) If the test done in (ii) gives a negative result, then declare all the 5 individual to be covid negative. (iv) If the test done in (ii) give positive result, then all the 5 individuals are separately tested for covid. Given this strategy, no more than testing kits will be required to identify all the 100 covid positive individuals irrespective of how they are grouped. (A) 700 (B) 600 (C) 800 (D) 1000 										
Ans.	(A)										
Sol.	Given :										
	Number of individuals in town is, 1000										
	Number of unidentified covid individuals in town is, 100										
	Due to lack of adequate covid-testing kits, the health authorities of the town devised a strategy to identify										
	(i) Collect coline comple from all 1000 individ	0 : 	. d.a		into acts of 5						
	(1) Conect sanva sample from an 1000 individ		aoniny gre	up mem	linto sets of 5.						
	(ii) Mix the complex within each set and test th	$00 \div 5 = 2$	00, mpla for a	avid							
	For the testing of one set of 5 people 1 test	ing kit reg	uired	Jviu.							
	So for 200 set total 200 testing kit will requ	nig ku req nired	uncu	0							
	(iii) If the test done in (ii) gives a negative resul	t, then dec	lare all the	5 individ	lual to be covid negative.						
	 (iv) If the test done in (ii) give positive result, then all the 5 individuals are separately tested for covid. The maximum number of 100 unidentified individuals are covid positive. 										
	Let, all unidentified covid positive are in different set, then the number of kits required will be.										
	Number of people in one set × Number of set,										
	$5 \times 100 = 500$ kits										
	Maximum number of kits required will be,	G	A	T	E						
	200+500 = 700 kits	1 (* C 11	1 100	• 1 •	• • • • • • • •						
	of how they are grouped.	dentity all	the 100 cov	/10 positi	ve individuals irrespective						
	Hence, the correct option is (A).										
Quest	tion 10		General	Aptitud	le : Verbal Ability						
	A 100 cm×32 cm rectangular sheet is folded 5 ti	mes. Each	time the s	heet is fo	olded, the long edge aligns						
	with its opposite side. Eventually, the folded shee	et is a recta	ingle of di	nensions	100 cm ×1 cm.						
	The total number of creases visible when the shee	et is unfold	led is	·							
	(A) 32	(B) 5									
	(C) 31	(D) 6	3								
Ans.	(C)										
Sol.	Given :										
	A 100 cm \times 32 cm rectangular sheet is folded 5 ti	mes. Each	time the s	heet is fo	olded, the long edge aligns						
	with its opposite side. Eventually, the folded shee	et is a recta	ingle of di	nensions	100 cm×1 cm.						

The total number of creases visible when sheet is unfolded can be find by fallowing given procedure, lets take a sheet of paper and fold it for one time and open it, total number of creases visible will be one.

🝸 unacademy GATE 2023 [Afternoon Session] PAGE **Electronics & Communication Engineering** 7 🛳 GATE ACADEMY' $|\hat{e}| = \sqrt{(1-2\alpha)^2 + (2-\alpha)^2 + (-3\alpha)^2}$ $|\hat{e}|^2 = 5 + 14\alpha^2 - 8\alpha$ to be minimum $\frac{de^2}{d\alpha} = 28\alpha - 8 = 0$ $\therefore \quad \alpha = \frac{2}{7}$ is the stationary point. Hence, the correct option is (C). Method 2: $V_1 = \alpha V_2 + e$ $e = V_1 - \alpha V_2$ $e = \begin{bmatrix} 1 - 2\alpha \\ 2 - \alpha \\ -3\alpha \end{bmatrix}$ Length $||e|| = \sqrt{(1-2\alpha)^2 + (2-\alpha)^2 + (-3\alpha)^2}$ $\left\|e\right\| = \sqrt{14\alpha^2 - 8\alpha + 5}$ For minimum length of e, $\frac{d}{d\alpha} \|e\| = 0$ $\frac{28\alpha - 8}{2\sqrt{14\alpha^2 - 8\alpha + 5}} = 0$ 2

$$\alpha = \frac{1}{7}$$

Hence, the correct option is (C).

Question 12

The rate of increase, of a scalar field f(x, y, z) = xyz, in the direction v = (2, 1, 2) at a point (0, 2, 1) is

(A) $\frac{2}{3}$ (B) $\frac{4}{3}$ (C) 2 (D) 4

Ans. **(B)**

Sol. **Given :** f(x, y, z) = xyz

$$\nabla f = yz\hat{i} + zx\hat{j} + xy\hat{k}$$
$$\nabla f_{(0,2,1)} = 2\hat{i} + 0\hat{j} + 0\hat{k}$$
$$\vec{v} = 2\hat{i} + \hat{j} + 2\hat{k}$$

Directional derivative, $DD = \nabla f \cdot \frac{v}{|\vec{v}|}$

GATE 2023 [Afternoon Session]

Electronics & Communication Engineering

🝸 unacademy

🛕 GATE ACADEMY

Given curve is,
$$\left|z+1-\frac{3}{2}j\right| = 1$$

If $z = -1+j$ then $\left|z+1-\frac{3}{2}j\right| = \left|-1+j+1-\frac{3}{2}j\right| = 0.5 < 100$
So, $z = -1+j$ lies inside the curve
If $z = -1-j$ then $\left|z+1-\frac{3}{2}j\right| = \left|-1-j+1-\frac{3}{2}j\right| = 2.5 > 100$
So, $z = -1-j$ lies outside the curve
 \therefore Residue at $z = -1-j$ will be 0
Residue at $z = -1+j$ will be,
 $R = \lim_{z \to -1+j} \frac{(z+2)(z+1-j)}{z^2+2z+2}$
 $= \lim_{z \to -1+j} \frac{(z+2)(z+1-j)}{z^2+2z+2}$

$$= \frac{\min_{z \to -1+j} (z+1-j)(z+1+j)}{-1+j} = \frac{-1+j}{2j}$$

From Cauchy's residue theorem, *.*..

$$\oint_{c} f(z)dz = 2\pi jR = 2\pi j \times \frac{(1+j)}{2j} = \pi(1+j)$$

Hence, the correct option is (B).

Question 15

Let the sets of eigenvalues and eigenvectors of a matrix B be $\{\lambda_k | 1 \le k \le n\}$ and $\{V_k | 1 \le k \le n\}$, respectively. For any invertible matrix P, the sets of eigenvalues and eigenvectors of the matrix A, where $B = P^{-1}AP$, respectively are

- (A) $\{\lambda_k \det(A) \mid 1 \le k \le n\}$ and $\{PV_k \mid 1 \le k \le n\}$ (B) $\{\lambda_k \mid 1 \le k \le n\}$ and $\{V_k \mid 1 \le k \le n\}$
- (C) $\{\lambda_k \mid 1 \le k \le n\}$ and $\{PV_k \mid 1 \le k \le n\}$

(D)
$$\{\lambda_k \mid 1 \le k \le n\}$$
 and $\{P^{-1}V_k \mid \le 1 \le k \le n\}$

Mathematics : Linear Algebra

Ans. (C)

Given : Matrix *B* has Eigen value λ_k and Eigen vector V_k . Sol.

> $\therefore BV_k = \lambda_k V_k$ Also given $B = P^{-1}AP$ $(P^{-1}AP)V_k = \lambda_k V_k$ Multiplying with P on both sides, we get $A(PV_k) = \lambda_k (PV_k)$ \therefore Eigen value of $A = \lambda_k$

Eigen vector of matrix $A = PV_k$

Hence, the correct option is (C).

PAGE	GATE 2023 [Afternoon Sess	ion]	🝸 unacademy						
10	Electronics & Communication Enginee	ring	🙈 GATE ACADEMY°						
Quest	tion 16 Electronic Devi	ices & (Circuits : Basic Semiconductor Physics						
	In a semiconductor, if the Fermi energy level lies in the conduction band, then the semiconductor is known as								
	(A) degenerate n type	(B)	degenerate p-type						
	(C) non-degenerate n type	(D)	non-degenerate p-type						
Ans.	(A)								
Sol.	Given that the fermi level lies in the conduction	band. So	o, it will be a degenerate n- type semiconductor.						
Ques	Hence, the correct option is (A).	000 8 0	irquite : Pacie Semiconductor Physics						
Ques	For an intrinsic semiconductor at $T = 0$ K which	of the f	ollowing statement is true?						
	(A) All energy states in the valence band are fille	ed with e	electrons and all energy states in the conduction						
	band are empty of electrons.								
	(B) All energy states in the valence band are emp band are filled with electrons.	oty of ele	ectrons and all energy states in the conduction						
	(C) All energy states in the valence and conducti	on band	are filled with holes.						
	(D) All energy states in the valence and conducti	on band	are filled with electrons.						
Ans.	(A) Example the formula of $T = 0^9 K$ the	1	R Clin d article all and an a						
30 l.	For an intrinsic semi-conductor at $T = 0$ K, the conduction band will be empty	valence	band will be filled with electrons and						
	Hence, the correct option is (A).								
Quest	tion 18		Network Theory : Resonance						
	A series RLC circuit has a quality factor Q of 100 of R, L and C are	0 at a ce	nter frequency of 10 ⁶ rad/sec. The possible value						
	(A) $R = 1\Omega, L = 1\mu H$ and $C = 1\mu F$	(B)	$R = 0.1\Omega, L = 1 \mu H$ and $C = 1 \mu F$						
	(C) $R = 0.01\Omega, L = 1\mu H \text{ and } C = 1\mu F$	(D)	$R = 0.001\Omega$, $L = 1 \mu$ H and $C = 1 \mu$ F						
Ans.	(D)								
Sol.	Given : $Q = 1000$, $\omega_0 = 10^6$ rad/sec								
	Quality factor and resonant frequency of series F	RLC circ	uit is given by,						
	$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$ and $\omega_0 = \frac{1}{\sqrt{LC}}$								
	Checking from options for options :								
	For option (A) :								
	$L = 1 \ \mu \text{H}, C = 1 \ \mu \text{F}, R = 1 \ \Omega$								
	$Q = \frac{1}{1} \sqrt{\frac{10^{-6}}{10^{-6}}}$								
	Q = 1								
	$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{10^{-12}}} = 10^6 \text{ rad/sec}$								

For option (B) :

$$L = 1 \ \mu\text{H}, C = 1 \ \mu\text{F}, \ R = 0.1 \ \Omega$$
$$Q = \frac{1}{0.1} \sqrt{\frac{10^{-6}}{10^{-6}}} = 10$$
$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{10^{-6} \times 10^{-6}}} = 10^6 \ \text{rad/sec}$$

$$R = 0.01 \Omega, L = 1 \mu H, C = 1 \mu F$$

$$Q = \frac{1}{0.01} \sqrt{\frac{10^{-6}}{10^{-6}}} = 100$$
$$\omega_0 = \frac{1}{\sqrt{10^{-6} \times 10^{-6}}} = 10^6 \text{ rad/sec}$$

For option (D) : $R = 0.001 \Omega, L = 1 \mu H, C = 1 \mu F$

$$Q = \frac{1}{0.001} \sqrt{\frac{10^{-6}}{10^{-6}}} = 1000$$
$$\omega_0 = \frac{1}{\sqrt{10^{-6} \times 10^{-6}}} = 10^6 \text{ rad/sec}$$

So, option (D) satisfies the condition given in the question. Hence, the correct option is (D).

Question 19

Electronic Devices & Circuits : MOS Capacitor

For a MOS capacitor V_{fb} and V_t are the flat-band voltage and threshold voltage, respectively. The variation of depletion width (W_{dep}) for varying gate voltage (V_g) is best represented by

🝸 unacademy 🛕 GATE ACADEMY

When $V_g < V_{fb} \Longrightarrow W_{dep} = 0$ Sol.

When $V_{fb} < V_g < V_t \Longrightarrow W_{dep}$ increases

When $V_g > V_t \Longrightarrow W_{dep}$ becomes constant

: Only option (C) satisfies the above conditions

Hence, the correct option is (B).

Question 20

Electromagnetic Theory : Plane Wave Propagation

Consider a narrow band signal, propagating in a lossless dielectric medium ($\varepsilon_r = 4, \mu_r = 1$), with phase velocity v_p and group velocity v_g . Which of following statement is true? (c is the velocity of light in vacuum)

(A)	$v_p > c, v_g > c$	(B)	$v_p < c, v_g > c$
(C)	$v_P > c, v_g < c$	(D)	$v_P < c, v_g < c$

(D) Ans.

It is an unbounded region. Hence, the correct relationship will be $v_p < c$, $v_g < c$. Sol.

Hence, the correct option is (D).

Question 21

Analog Electronics : JFET and MOSFET Amplifier with Biasing

In the circuit shown below, V_1 and V_2 are bias voltages. Based on input and output impedances, the circuit behaves as a

- (A) voltage controlled voltage source (C) current controlled voltage source
- (D) current controlled current source

- (D) Ans.
- Sol. Given circuit acts as a common gate amplifier. Common gate amplifier has low input impedance and high output impedance
 - . The given circuit acts as a current controlled current source.

Hence, the correct option is (D).

Question 22

Analog Electronics : Feedback Amplifiers

A cascade of common source amplifiers in a unity gain feedback configuration oscillates when

- (A) the closed loop gain is less than 1 and the phase shift is less than 180°
- (B) the closed loop gain is greater than 1 and the phase shift is less than 180°
- (C) the closed loop gain is less than 1 and the phase shift is greater than 180°
- the closed loop gain is greater than 1 and the phase shift is greater than 180° (D)

(D) Ans.

Sol. When cascaded amplifier acts as oscillator, then increasing oscillations will be observed.

 \therefore Closed loop gain >1 and phase shift > 180°.

Hence, the correct option is (D).

Ouestion 23

Digital Electronics : Combinational Circuits

In the circuit shown below, P and Q are the inputs. The logical function realized by the circuit shown below is

Question 24

Digital Electronics : Sequential Circuits

The synchronous sequential circuit shown below works at a clock frequency of 1 GHz. The throughput, in Mbits/s, and the latency, in ns, respectively, are

 $f_{\rm clk} = 1 \,{\rm GHz}$

$$T_{\rm clk} = \frac{1}{f_{\rm clk}} = \frac{1}{10^9} = 10^{-9} \, {\rm sec}$$

 $T_{\rm clk} = 1 \, {\rm n \, sec}$

For Serial In Serial Out shift register,

Latency is given by NT_{clk} , where N is number of Flip-Flops.

Latency = NT_{clk} = 3×1ns = 3ns

Throughput is given by number of bits per second.

In this circuit, we get 1 bit of output every T_{clk} (=1ns)

So, we get 1 bit every 1 nsec.

 $\Rightarrow 10^9$ bits every second

 $\Rightarrow 10^3$ Mbits per second

Hence, the correct option is (A).

Question 25

Control Systems : Polar Plot

The open loop transfer function of a unity negative feedback system is $G(s) = \frac{K}{s(1+sT_1)(1+sT_2)}$, where

K, T_1 and T_2 are positive constants. The phase cross-over frequency, in rad/sec, is

(A)
$$\frac{1}{\sqrt{T_1 T_2}}$$

(C) $\frac{1}{T_1 \sqrt{T_2}}$

(B)
$$\frac{1}{T_1 T_2}$$

(D) $G \frac{1}{T_2 \sqrt{T_1}} \mathbf{A}$ **T E**

(A) Ans.

Given open loop transfer function is, $G(s) = \frac{K}{s(1+sT_1)(1+sT_2)}$ Sol.

At phase cross over frequency,
$$\angle G(j\omega) = -180^{\circ}$$

 $\angle G(j\omega) = -90^{\circ} - \tan^{-1}\omega T_1 - \tan^{-1}\omega T_2$
 $\angle G(j\omega) = -180^{\circ}$ at $\omega = \omega_{pc}$
 $-90^{\circ} - \tan^{-1}\omega_{pc}T_1 - \tan^{-1}\omega_{pc}T_2 = -180^{\circ}$
 $90^{\circ} = \tan^{-1}\omega_{pc}T_1 + \tan^{-1}\omega_{pc}T_2$
 $90^{\circ} = \tan^{-1}\left[\frac{\omega_{pc}T_1 + \omega_{pc}T_2}{1 - \omega_{pc}^2 T_1 T_2}\right]$
 $\tan 90^{\circ} = \frac{\omega_{pc}T_1 + \omega_{pc}T_2}{1 - \omega_{pc}^2 T_1 T_2}$

GATE 2023 [Afternoon Session] Electronics & Communication Engineering 🝸 unacademy

\land GATE ACADEMY®

Energy of m(t) will be,

$$E = \frac{1}{2\pi} \int_{-B}^{B} 1^{2} d\omega = \frac{2B}{2\pi} = \frac{B}{\pi} \qquad \dots(i)$$
Let $y(t) = m(t) \cos \omega_{0} t$
Given : $\omega_{0} = 10B$
So, $y(t) = m(t) \cos 10Bt$
Taking Fourier transform on both sides, we get
 $Y(\omega) = \frac{1}{2} [M(\omega - 10B) + M(\omega + 10B)]$
 $Y(\omega)$ can be plotted as shown below,
 $Y(\omega)$
 $F(\omega)$
 $F(\omega$

 $E_y = \frac{L}{2}$

Hence, the correct option is (B).

Question 28

Signals & Systems : Continuous Time Fourier Transform

The Fourier transform $X(\omega)$ of $x(t) = e^{-t^2}$ is

Note :
$$\int_{-\infty}^{\infty} e^{-y^{2}} dy = \sqrt{\pi}$$
(A) $\sqrt{\pi} e^{\frac{\omega^{2}}{2}}$
(B) $\frac{e^{\frac{-\omega^{2}}{4}}}{2\sqrt{\pi}}$
(C) $\sqrt{\pi} e^{\frac{-\omega^{2}}{4}}$
(D) $\sqrt{\pi} e^{\frac{-\omega^{2}}{2}}$

Ans. (C)

Sol. We know that, $e^{-\pi t^2} \longleftrightarrow e^{-\pi f^2} = e^{-\pi \left(\frac{\omega}{2\pi}\right)^2} = e^{\frac{-\omega^2}{4\pi}}$ $e^{-\pi t^2} \longleftrightarrow e^{\frac{-\omega^2}{4\pi}}$

GATE 2023 [Afternoon Session] Electronics & Communication Engineering

Put
$$t = \frac{\iota}{\sqrt{\pi}}$$

 $e^{-\pi \left(\frac{t}{\sqrt{\pi}}\right)^2} \longleftrightarrow \sqrt{\pi} e^{\frac{-\omega^2 (\sqrt{\pi})^2}{4\pi}}$

$$e^{-t^2} \longleftrightarrow \sqrt{\pi} e^{\frac{-\omega^2}{4}}$$

$$\left[x(at)\longleftrightarrow \frac{1}{|a|} \times \left(\frac{\omega}{a}\right)\right]$$

Hence, the correct option is (C).

Question 29

Signals & Systems : Continuous Time Fourier Transform

In the table shown below, match the signal type with its spectral characteristics.

Signal type

- (i) Continuous, aperiodic
- (ii) Continuous, periodic
- (iii) Discrete, aperiodic
- (iv) Discrete, periodic
- (A) (i)-(a), (ii)-(b), (iii)-(c), (iv)-(d)
- (C) (i)-(d), (ii)-(b), (iii)-(c), (iv)-(a)

Spectral characteristics

- (a) Continuous, aperiodic
- (b) Continuous, periodic
- (c) Discrete, aperiodic
- (d) Discrete, periodic
- (B) (i)-(a), (ii)-(c), (iii)-(b), (iv)-(d)
- (D) (i)-(a), (ii)-(c), (iii)-(d), (iv)-(b)

Ans. (B)

- **Sol.** (1) A continuous and aperiodic signal has continuous and aperiodic spectrum (Fourier Transform).
 - (2) A continuous and periodic signal has discrete and aperiodic spectrum (Continuous Time Fourier Series).
 - (3) A discrete and aperiodic signal has continuous and periodic spectrum (Discrete Time Fourier Transform).
 - (4) A discrete and periodic signal has discrete and periodic spectrum (Discrete Fourier Transform/Discrete Time Fourier Series).

Hence, the correct option is (B).

Question 30 Communication Systems : Random Variables and Random Processes

For a real signal, which of the following is/are valid power spectral density/densities?

GATE 2023 [Afternoon Session] **Electronics & Communication Engineering**

🝸 unacademy

GATE ACADEMY

Sol. From the properties of power spectral density $S_X(-\omega) = S_X(\omega) \forall \omega$ and $S_X(\omega) \ge 0 \forall \omega$.

Consider option (A) :

$$S_X(\omega) = \frac{2}{9+\omega^2}$$

For any value of ω ,

 $S_{X}(\omega)$ is positive. So, $S_{X}(\omega) > 0$

$$S_{X}(-\omega) = \frac{2}{9 + (-\omega)^{2}} = \frac{2}{9 + \omega^{2}} = S_{X}(\omega)$$

So, option (A) is a valid power spectral density.

Consider option (B) :

$$S_X(\omega) = e^{-\omega^2} \cos^2 \omega$$

At
$$\omega = \frac{\pi}{2}$$
, $S_x\left(\frac{\pi}{2}\right) = e^{-\left(\frac{\pi}{2}\right)^2} \cos^2 \frac{\pi}{2} = 0$

For any other value of ω ,

 $S_{X}(\omega)$ is positive. So, $S_{X}(\omega) \ge 0$

$$S_X(-\omega) = e^{-(-\omega)^2} \cos^2(\omega) = e^{-\omega^2} \cos^2 \omega$$

$$S_{X}(-\omega) = S_{X}(\omega)$$

So, option (B) is a valid power spectral density.

Consider option (C) :

So, option (C) is not a valid power spectral density.

Consider option (D) :

ω

** To Unlock All Courses of GATE/ESE/AE-JE Use Code "GA1111". **

 $S_{\rm v}(\omega)$

1

0

- 1

PAGE GATE 2023 [Afternoon Session]

19 Electronics & Communication Engineering

From the above plot, $S_x(\omega)$ is positive but not an even function, that is $S_x(\omega) \ge 0$ but $S_x(-\omega) \ne S_x(\omega)$

So, option (D) is not a valid power spectral density.

Hence, the correct options are (A) & (B).

Question 31

Digital Electronics : ADC and DAC

🝸 unacademy

GATE ACADEMY

The signal-to-noise ratio (SNR) of an ADC with a full-scale sinusoidal input is given to be 61.96 dB. The resolution of the ADC is _____ bits. (rounded off to nearest integer)

Ans. 10 (10 to 10)

Sol. Given :

SNR of ADC = 61.96 dB

SNR = 1.76 + 6.02n dB

61.96 = 1.76 + 6.02n

n = 10

Hence, the correct answer is 10.

Question 32

Network Theory : Basic Concepts of Networks

In the circuit shown below, the current *i* flowing through 200Ω resistor is _____ mA (rounded off to two decimal places).

Ans. 1.36 (1.30 to 1.40)

Sol. Given circuit is,

Applying source transformation,

Applying nodal analysis at node V,

GATE 2023 [Afternoon Session] **Electronics & Communication Engineering**

🝸 unacademy

📥 GATE ACADEMY

$$\frac{V-2}{2000} + \frac{V}{2000} - 10^{-3} + \frac{V+1}{1200} = 0$$

V = 0.637 V

Current through 200Ω is,

$$i_L = \frac{V+1}{1200} = \frac{0.637+1}{1200}$$

$$i_{L} = 1.36 \text{mA}$$

Hence, the correct answer is 1.36.

Question 33

Sol.

Network Theory : Two port Networks

For the two port network below, the [Y]-parameters is given as

$$[Y] = \frac{1}{100} \begin{bmatrix} 2 & -1 \\ -1 & \frac{4}{3} \end{bmatrix} S$$

The value of load impedance Z_L (in Ω), for maximum power transfer will be _____ (rounded off to the nearest integer).

GATE 2023 [Afternoon Session] Electronics & Communication Engineering unacademy
GATE ACADEMY

$$Y_{11} = Y_A + Y_B = \frac{2}{100}$$
$$Y_{12} = Y_{21} = -Y_B = \frac{-1}{100}$$
$$Y_{22} = Y_B + Y_C = \frac{4}{300}$$

From the above equations,

$$Y_A = \frac{1}{100} S, Y_B = \frac{1}{100} S, Y_C = \frac{1}{300} S$$

Now replacing this pie network in two port network.

unacademy

\land GATE ACADEMY®

To find the value of Z_L for maximum power transfer, all the independent sources will be disabled and the given 2-port network can be drawn as shown below,

Equations for Y-parameter's are,

$$I_{1} = \frac{2}{100}V_{1} - \frac{1}{100}V_{2} \qquad \dots (i)$$
$$I_{2} = \frac{-1}{100}V_{1} - \frac{4}{300}V_{2} \qquad \dots (ii)$$

From figure (A),

$$V_1 = -10I_1 \Longrightarrow I_1 = \frac{-V_1}{10} \qquad \dots \text{(iii)}$$
$$V_2 = 1 \qquad \dots \text{(iv)}$$
$$I_2 = I \qquad \dots \text{(v)}$$

Substituting equation (iii) and (iv) in equation (i), we get

$$-\frac{V_{1}}{10} = \frac{2}{100}V_{1} - \frac{1}{100}$$
$$\frac{12V_{1}}{100} = \frac{1}{100}$$
$$12V_{1} = 1$$
$$V_{1} = \frac{1}{12}$$
...(vi)

Substituting equation (v) and (vi) in equation (ii), we get

$$I = -\frac{1}{100} \times \frac{1}{12} + \frac{4}{300}$$
$$I = \frac{16-1}{1200} = \frac{15}{1200}$$
$$\therefore \quad Z_L = \frac{1}{I} = \frac{1200}{15} = 80$$

Hence, the correct answer is 80.

Question 34

Digital Electronics : Logic Gates

For the circuit shown below, the propagation delay of each NAND gate is 1 ns. The critical path delay, in ns, is ______ (rounded off to the nearest integer).

Critical path delay =1+1=2 ns

Hence, the correct answer is 2.

Question 35

Network Theory : Transient Analysis

In the circuit shown below, switch *S* was closed for a long time. If switch is opened at t = 0, the maximum magnitude of the voltage V_R , in volts, is _____ (rounded off to the nearest integer).

Ans. 4 (04 to 04)

PAGE GATE 2023 [Afternoon Session] 24 Electronics & Communication Engineering

🝸 unacademy

Sol. Given circuit is

At $t = 0^{-}$, switch is closed circuit is in steady state and inductor acts as S.C.

$i_L(0^-) = 2 \text{ A}$

At $t = 0^+$, switch is open and inductor acts as O.C.

Q.36 to Q.65 Carry Two Marks Each

Question 36

Communication Systems : Random Variables & Random Processes

A random variable X, distributed normally as N(0, 1), undergoes the transformation Y = h(X), given in the figure. The form of probability density function of Y is

(In the options given below, a, b, c non-zero constant and g(y) is piecewise continuous function)

GATE 2023 [Afternoon Session]

🝸 unacademy

Electronics & Communication Engineering

Method 2:

Given integral is,
$$I = \int_{P}^{Q} (z^2 dx + 3y^2 dy + 2xz dz)$$

 $I = \int_{P}^{Q} (d(xz^2) + 3y^2 dy) = \int_{x=1,z=2}^{x=2,z=1} d(xz^2) + \int_{y=1}^{y=3} 3y^2 dy$
 $I = (xz^2)_{x=1,z=2}^{x=2,z=1} + 3\left(\frac{y^3}{3}\right)_{1}^{3} = 2(1)^2 - 1(2)^2 + 3\left[\frac{27}{3} - \frac{1}{3}\right]$
 $I = 2 - 4 + 26 = 24$

Hence, the correct option is (B).

Question 38

Mathematics : Linear Algebra

Let x be an $n \times 1$ real column vector with length $l = \sqrt{x^T x}$. The trace of matrix $P = xx^T$ is $\frac{l^2}{4}$

(B)

(D)

(A) l^2

(C) *l*

Ans. (A)

Given that x is a $n \times 1$ column vector. Sol.

Let,
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

 $x^{T} = [x_{1}x_{2}....x_{n}]$

Given length of vector x.

$$l = \sqrt{x^{T} x}$$

$$l^{2} = x^{T} x$$

$$l^{2} = [x_{1}x_{2}....x_{n}] \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$l^{2} = x_{1}^{2} + x_{2}^{2} +x_{n} + x_{n}^{2} \qquad \dots (i)$$
Now we have to find trace of matrix $P = xx^{T}$

Now we have to find trace of matrix, P = xx $\lceil r \rceil$

$$P = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} [x_1 x_2 \dots x_n]$$

★★ To Unlock All Courses of GATE/ESE/AE-JE Use Code "GA1111". ★★

 R_{γ}

 R_1

PAGE GATE 2023 [Afternoon Session] 28 Electronics & Communication Engineering

From the above figure, $V_{01} = -\frac{R_2}{R_1} \times V_{in}$...(i)

$$V_{02} = \left(1 + \frac{R_2}{R_1}\right) V_{in} \qquad \dots (ii)$$

$$\therefore \quad V_{out} = -\frac{R_4}{R_3} V_{01} - \frac{R_4}{R_3} V_{02}$$

$$V_{out} = \frac{-R_4}{R_3} [V_{01} + V_{02}] \qquad \dots (iii)$$

Substituting equations (i) and (ii) in equation (iii), we get

$$V_{out} = \frac{-R_4}{R_3} \left[\frac{-R_2}{R_1} V_{in} + V_{in} + \frac{R_2}{R_1} V_{in} \right] = \frac{-R_4}{R_3} V_{in} \implies \frac{V_{out}}{V_{in}} = \frac{-R_4}{R_3}$$

Hence, the correct option is (A).

Question 40

Analog Electronics : Diode Circuits & Applications

🝸 unacademy

GATE ACADEMY

In the circuit shown below, D_1 and D_2 are silicon diodes with cut-in voltage of 0.7 V. V_{IN} and V_{OUT} are input and output voltages in volts. The transfer characteristic is

Hence, the correct option is (A).

🝸 unacademy GATE 2023 [Afternoon Session] PAGE **Electronics & Communication Engineering** 31 **GATE ACADEMY Question 42 Control Systems : Block Diagram & Signal Flow Graph** In the following block diagram, R(s) and D(s) are two inputs. The output Y(s) is expressed as $Y(s) = G_1(s)R(s) + G_2(s)D(s)$. $G_1(s)$ and $G_2(s)$ are given by D(s)R(s) -G(s) $\rightarrow Y(s)$ H(s)

(A)
$$G_1(s) = \frac{G(s)}{1 + G(s) + G(s)H(s)}$$
 and $G_2(s) = \frac{G(s)}{1 + G(s) + G(s)H(s)}$

(B)
$$G_1(s) = \frac{G(s)}{1+G(s)+H(s)}$$
 and $G_2(s) = \frac{G(s)}{1+G(s)+H(s)}$

(C)
$$G_1(s) = \frac{G(s)}{1+G(s)+H(s)}$$
 and $G_2(s) = \frac{G(s)}{1+G(s)+G(s)H(s)}$
(D) $G_1(s) = \frac{G(s)}{1+G(s)+G(s)}$ and $G_2(s) = \frac{G(s)}{1+G(s)+G(s)}$

D)
$$G_1(s) = \frac{G(s)}{1 + G(s) + G(s)H(s)}$$
 and $G_2(s) = \frac{G(s)}{1 + G(s) + H(s)}$

Ans. (A)

Sol. Given :

and $Y(s) = G_1(s)R(s) + G_2(s)D(s)$

Let
$$Y(s) = Y_1(s) + Y_2(s)$$

Where, $Y_1(s) =$ Output considering only R(s), $Y_2(s) =$ Output considering only D(s). When only R(s) is present.

GATE 2023 [Afternoon Session]

Electronics & Communication Engineering

yunacademy

$$\frac{Y_{1}(s)}{R(s)} = \frac{\frac{G(s)}{1+G(s)H(s)}}{1+\frac{G(s)}{1+G(s)H(s)}}$$
$$Y_{1}(s) = \left[\frac{G(s)}{1+G(s)+G(s)H(s)}\right]R(s)$$
Hence, $G_{1}(s) = \frac{G(s)}{1+G(s)+G(s)H(s)}$

When only D(s) is present.

Hence, the correct option is (A).

Question 43

Mathematics : Linear Algebra

The state equation of a second order system is $\dot{x}(t) = Ax(t)$, x(0) is the initial condition.

Suppose λ_1 and λ_2 are two distinct Eigen values of *A* and V_1 and V_2 are the corresponding Eigen vectors. For constant α_1 and α_2 , the solution, x(t) of the state equation is

(A)
$$\sum_{i=1}^{2} \alpha_{i} e^{\lambda_{i} t} V_{i}$$

(B)
$$\sum_{i=1}^{2} \alpha_{i} e^{2\lambda_{i} t} V_{i}$$

(C)
$$\sum_{i=1}^{2} \alpha_{i} e^{3\lambda_{i} t} V_{i}$$

(D)
$$\sum_{i=1}^{2} \alpha_{i} e^{4\lambda_{i} t} V_{i}$$

Ans. (A)

GATE 2023 [Afternoon Session] **Electronics & Communication Engineering** 33

Sol. **Given :** $\dot{x}(t) = Ax(t)$

If λ is the eigen value of matrix A then $\dot{x}(t) = \lambda x(t)$

As there are 2 eigen values λ_1 and λ_2 of matrix A, the solution of state equation will be,

$$x(t) = \sum_{i=1}^{2} \alpha_i e^{\lambda_i t} V_i$$

Hence, the correct option is (A).

Question 44

Network Theory : Transient Analysis

The switch S_1 was closed and S_2 was open for a long time. At t = 0, switch S_1 is opened and S_2 is closed, simultaneously. The value of $i_c(0^+)$, in amperes, is

GATE 2023 [Afternoon Session] Electronics & Communication Engineering

Applying KCL at node A,

$$i_c(0^+) + 0.2 + \frac{20}{25} = 0$$

 $i_c(0^+) = -0.8 - 0.2$
 $i_c(0^+) = -1A$

Hence, the correct option is (B).

Question 45

Communication Systems : Anagle Modulation

🝸 unacademy

📥 GATE ACADEMY

Let a frequency modulated (FM) signal $x(t) = A\cos[\omega_c t + k_f \int_{-\infty}^{t} m(\lambda) d\lambda]$, where m(t) is the message signal of bandwidth *W*. It is passed through a non-linear system with output $y(t) = 2x(t) + 5[x(t)]^2$. Let B_T denote the FM bandwidth. The minimum value of ω_c required to recover x(t) from y(t) is

The h-parameters of a two-port network are shown below. The condition for the maximum small signal

(A) $h_{11} = 0, h_{12} = 0, h_{21} = \text{very high and } h_{22} = 0$

(B)
$$h_{11} = \text{very high}, h_{12} = 0, h_{21} = \text{very high and } h_{22} = 0$$

(C)
$$h_{11} = 0, h_{12} = \text{very high}, h_{21} = \text{very high and } h_{22} = 0$$

(D)
$$h_{11} = 0, h_{12} = 0, h_{21} = \text{very high and } h_{22} = \text{very high}$$

Ans. (A) [MTA]

Sol. $\frac{V_0}{V_c} = \frac{-h_{21} \times R_L}{h_{11}}$

For $\frac{V_0}{V} = \frac{-h_{21} \times R_L}{h_1}$ to be maximum, $h_{11} = 0$ and h_{21} should be very high. Ideally h_{12} and h_{22} should be zero.

In the figure of the given question the current source is modelled as $h_{21}V_1$. But according to the hparameter model, it should be $h_{21}I_1$. Hence, it should be marks to all question (MTA). If $h_{21}I_1$ had been given instead of $h_{21}V_1$, then option (A) would have been correct.

🝸 unacademy

GATE ACADEMY

Question 47 Signals & Systems : Continuous & Discrete Time Fourier Series Consider a discrete time periodic signal with period N = 5. Let the discrete time Fourier series (DTFS) representation be $x[n] = \sum_{k=0}^{4} a_k e^{j\frac{k2\pi n}{5}}$, where, $a_0 = 1$, $a_1 = 3j$, $a_2 = 2j$, $a_3 = -2j$ and $a_4 = -3j$. The value of the sum $\sum_{n=0}^{4} x[n] \sin \frac{4\pi n}{5}$ is (A) –10 (B) 10 (C) -2 (D) 2 (A) Ans. **Given :** $x[n] = \sum_{k=0}^{4} a_k e^{j\frac{k^2\pi n}{5}}$ Sol. where, $a_0 = 1$, $a_1 = 3j$, $a_2 = 2j$, $a_3 = -2j$ and $a_4 = -3j$ $\therefore \qquad \sum_{n=0}^{4} x(n) \sin \frac{4\pi n}{5} = \sum_{n=0}^{4} x(n) \left[\frac{e^{\frac{j4\pi n}{5}} - e^{\frac{-j4\pi n}{5}}}{2j} \right]$ $\sum_{n=0}^{4} x(n) \sin \frac{4\pi n}{5} = \frac{1}{2i} \left[\sum_{n=0}^{4} x(n) e^{\frac{j2\pi(2)n}{5}} - \sum_{n=0}^{4} x(n) e^{\frac{-j2\pi(2)n}{5}} \right] \dots (i)$ DTFS coefficient is given by, $a_k = \frac{1}{N} \sum_{n=1}^{N-1} x(n) e^{\frac{-j2\pi kn}{N}}$

Given that time period of x(n) is N = 5 sec

$$a_{k} = \frac{1}{5} \sum_{n=0}^{4} x(n) e^{\frac{-j2\pi kn}{5}}$$

$$\therefore \qquad \sum_{n=0}^{4} x(n) e^{\frac{-j2\pi kn}{5}} = 5a_{k}$$

If $k = -2$ then $\sum_{n=0}^{4} x(n) e^{\frac{j2\pi(2)n}{5}} = 5a_{-2}$...(ii)
If $k = 2$ then $\sum_{n=0}^{4} x(n) e^{\frac{-j2\pi(2)n}{5}} = 5a_{2}$...(iii)

Substituting equation (ii) and (iii) in equation (i), we get

$$\sum_{n=0}^{4} x(n) \sin \frac{4\pi n}{5} = \frac{1}{2j} [5a_{-2} - 5a_{2}] \qquad \dots \text{(iv)}$$

From the property of discrete Fourier series.

 $a_k = a_{k+N}$, where *N* is the time period.

$$\therefore \quad a_{-2} = a_{-2+5} = a_3$$

So, equation (iv) is becomes,

$$\sum_{n=0}^{4} x(n) \sin \frac{4\pi n}{5} = \frac{1}{2j} \left[5a_3 - 5a_2 \right] = \frac{1}{2j} \left[5 \times (-2j) - 5 \times 2j \right] = -10$$

Hence, the correct option is (A).

Question 48

Signals & Systems : DTFT and DFT

🝸 unacademy

📤 GATE ACADEMY®

Let an input x[n] having discrete time Fourier transform $X(e^{j\Omega}) = 1 - e^{-j\Omega} + 2e^{-3j\Omega}$ be passed through an LTI system. The frequency response of the LTI system is $H(e^{j\Omega}) = 1 - \frac{1}{2}e^{-j2\Omega}$. The output y[n] of the system is

(A) $\delta[n] + \delta(n-1) - \frac{1}{2}\delta[n-2] - \frac{5}{2}\delta[n-3] + \delta[n-5]$

(B)
$$\delta[n] - \delta(n-1) - \frac{1}{2}\delta[n-2] - \frac{5}{2}\delta[n-3] + \delta[n-5]$$

(C)
$$\delta[n] - \delta(n-1) - \frac{1}{2}\delta[n-2] + \frac{5}{2}\delta[n-3] - \delta[n-5]$$

(D)
$$\delta[n] + \delta(n-1) + \frac{1}{2}\delta[n-2] + \frac{5}{2}\delta[n-3] + \delta[n-5]$$

Ans. (C)

Sol. Method 1:

Given: $X(e^{j\Omega}) = 1 - e^{-j\Omega} + 2e^{-3j\Omega}$

$$H(e^{j\Omega}) = 1 - \frac{1}{2}e^{-j2\Omega}$$

We know that, $y(n) = x(n) \otimes h(n)$

Apply DTFT on both sides,

$$Y(e^{j\Omega}) = X(e^{j\Omega})H(e^{j\Omega})$$

$$Y(e^{j\Omega}) = (1 - e^{-j\Omega} + 2e^{-3j\Omega})\left(1 - \frac{1}{2}e^{-j2\Omega}\right)$$

$$= 1 - \frac{1}{2}e^{-j2\Omega} - e^{-j\Omega} + \frac{1}{2}e^{-j3\Omega} + 2e^{-j3\Omega} - e^{-j5\Omega}$$

$$Y(e^{j\Omega}) = 1 - e^{-j\Omega} - \frac{1}{2}e^{-j2\Omega} + \frac{5}{2}e^{-j3\Omega} - e^{-j5\Omega}$$

$$\therefore \quad y(n) = \delta(n) - \delta(n-1) - \frac{1}{2}\delta(n-2) + \frac{5}{2}\delta(n-3) - \delta(n-5)$$
Hence, the correct option is (C).

Method 2 :

Given: $X(e^{j\Omega}) = 1 - e^{-j\Omega} + 2e^{-3j\Omega}$

Taking inverse Fourier transform on both sides, we get $x(n) = \delta(n) - \delta(n-1) + 2\delta(n-3)$

Also, given
$$H(e^{j\Omega}) = 1 - \frac{1}{2}e^{-j2\Omega}$$

Taking inverse Fourier transform on both sides, we get

$$h(n) = \delta(n) - \frac{1}{2}\delta(n-2)$$

$$\therefore \text{ Output } y(n) = x(n) \otimes h(n)$$

$$y(n) = [\delta(n) - \delta(n-1) + 2\delta(n-3)] \otimes \left[\delta(n) - \frac{1}{2}\delta(n-2)\right]$$

We know, that $x(n) \otimes \delta(n-n_0) = x(n-n_0)$

$$y(n) = \delta(n) - \frac{1}{2}\delta(n-2) - \delta(n-1) + \frac{1}{2}\delta(n-3) + 2\delta(n-3) - \delta(n-5)$$
$$y(n) = \delta(n) - \delta(n-1) - \frac{1}{2}\delta(n-2) + \frac{5}{2}\delta(n-3) - \delta(n-5)$$

Hence, the correct option is (C).

Question 49

Signals & Systems : Classification of Systems

🝸 unacademy

🛕 GATE ACADEMY

Let $x(t) = 10\cos(10.5Wt)$ is passed through an LTI system having impulse response

$$h(t) = \pi \left(\frac{\sin Wt}{\pi t}\right)^2 \cos 10Wt$$
. The output of the system is
(A) $\left(\frac{15W}{4}\right) \cos (10.5Wt)$ (B) $\left(\frac{15W}{2}\right) \cos (10.5Wt)$
(C) $\left(\frac{15W}{8}\right) \cos (10.5Wt)$ (D) $(15W) \cos (10.5Wt)$

Ans. (A)

Sol. Given : $x(t) = 10\cos(10.5 \text{ Wt})$

(A) $\begin{bmatrix} S_{11}e^{-j2\theta_1} & S_{12}e^{-j(\theta_1+\theta_2)} \\ S_{21}e^{-j(\theta_1+\theta_2)} & S_{22}e^{-j2\theta_2} \end{bmatrix}$ (B) $\begin{bmatrix} S_{11}e^{j2\theta_1} & S_{12}e^{-j(\theta_1+\theta_2)} \\ S_{21}e^{-j(\theta_1+\theta_2)} & S_{22}e^{j2\theta_2} \end{bmatrix}$

Hence, the correct option is (A).

Question 52

The standing wave ratio on a 50 Ω lossless transmission line terminated in an unknown load impedance is found to be 2.0. The distance between successive voltage minima is 30 cm and first minimum is located at 10 cm from the load. Z_L can be replaced by an equivalent length l_m and terminating resistance R_m of same line. The value of R_m and l_m , respectively, are

Only options B and C satisfies the condition (i). Hence, the correct options are (B) and (C).

Question 53

Electromagnetic Theory : Polarization

The electric field of a plane electromagnetic wave is $\vec{E} = \hat{a}_x C_{1x} \cos(\omega t - \beta z) + \hat{a}_y C_{1y} \cos(\omega t - \beta z + \theta)$ V/m. Which of the following combination(s) will give rise to a left handed elliptically polarized (LHEP) wave?

(A)
$$C_{1x} = 1, C_{1y} = 1, \theta = \frac{\pi}{4}$$

(B) $C_{1x} = 2, C_{1y} = 1, \theta = \frac{\pi}{2}$
(C) $C_{1x} = 1, C_{1y} = 2, \theta = \frac{3\pi}{2}$
(D) $C_{1x} = 2, C_{1y} = 1, \theta = \frac{3\pi}{4}$

Ans. (A), (B), (D)

Sol. Given electromagnetic wave will be left elliptically polarized if

(i) y component leads x component

(ii)
$$C_{1x} \neq C_{1y}, \theta \neq \frac{\pi}{2}$$

(iii) $C_{1x} \neq C_{1y}, \theta = \frac{\pi}{2}$

GATE 2023 [Afternoon Session] **Electronics & Communication Engineering** 43

(iv) $C_{1x} = C_{1y}, \theta \neq \frac{\pi}{2}$

Only option (A), (B) and (D) satisfies the above conditions.

Hence, the correct options are (A), (B) and (D).

Question 54

Electromagnetic Theory : Transmission Lines

The following circuit(s) representing a lumped element equivalent of an infinitesimal section of a transmission line is/are

(B), (C) & (D) Ans.

Sol. Any transmission line can be represented in terms of primary constants R, L, G and C as shown below,

It can be seen from the above representation that R and L are in series, G and C are in parallel. With this logic, options (B), (C) and (D) will be the appropriate answer.

Hence, the correct options are (B), (C) & (D).

Ouestion 55

Mathematics : Integral & Differential Calculus

The value of the integral $\iint xy \, dx \, dy$ over the region *R*, given in the figure, is _____ (rounded off to

the nearest integer).

Ans. 0 (0 to 0)

PAGE	GATE 2023 [Afternoon Session]	🚽 unacademy
44	Electronics & Communication Engineering	\land GATE ACADEMY°
Sol.	Method 1: From the given region <i>R</i> , <i>y</i> = <i>x</i> + 2 <i>y</i> - <i>x</i> = 2(i) <i>y</i> = - <i>x</i> + 2 <i>y</i> + <i>x</i> = 2(ii) <i>y</i> = - <i>x</i> <i>y</i> + <i>x</i> = 0(iii) <i>y</i> = <i>x</i> <i>y</i> - <i>x</i> = 0(iv) Let <i>u</i> = <i>y</i> - <i>x</i> (5) and <i>v</i> = <i>y</i> + <i>x</i> (6) Jacobian $J\left(\frac{u,v}{x,y}\right) = \left \frac{u_x}{V_x} \frac{u_y}{V_y}\right = \left \frac{-1}{1} \frac{1}{1}\right $ $J\left(\frac{u,v}{x,y}\right) = -1 - 1 = -2$ So, $J\left(\frac{x,y}{u,v}\right) = -\frac{1}{2}$ $\left J\left(\frac{x,y}{u,v}\right)\right = \left -\frac{1}{2}\right = \frac{1}{2}$ <i>u</i> limits : <i>u</i> = 0 to <i>u</i> = 2 <i>v</i> limits : <i>v</i> = 0 to <i>v</i> = 2 From equations (v) and (vi), $x = \frac{v-u}{2}$ $y = \frac{v+u}{2}$ $\therefore \iint xydxdy = \int_{0}^{2}\int_{0}^{2}\left(\frac{v-u}{2}\right)\left(\frac{v+u}{2}\right) J dudv$ $= \int_{0}^{2}\int_{0}^{2}\frac{v^2-u^2}{4} \times \frac{1}{2}dudv = \frac{1}{8}\int_{0}^{2}\int_{0}^{2}(v^2-u^2)dudv$ $= \frac{1}{8}\int_{0}^{2}\left(uv^2 - \frac{u^3}{3}\right)_{0}^{2}dv = \frac{1}{8}\left[\frac{16}{3} - \frac{16}{3}\right] = 0$	
	Hence, the correct answer is 0.	

Hence, the correct answer is 0.

unacademy

Method 3 :

Given region R can be drawn as shown below,

Hence, the correct answer is 0.

Question 56

Electronic Devices & Circuits : Basic Semiconductor Physics

Α

In an extrinsic semiconductor, the hole concentration is given to be $1.5n_i$, where n_i is intrinsic carrier concentration of 1×10^{10} cm⁻³. The ratio of electron to hole mobility for equal hole and electron drift current is given as _____ (rounded off to two decimal places).

G

Ans. 2.25 (2.20 to 2.30)

Sol. Given : Hole concentration $p = 1.5n_i$

Intrinsic concentration $n_i = 1.5 \times 10^{10} cm^{-3}$

Also given,
$$I_n = I_p$$

$$\Rightarrow J_n \times A = J_p \times A$$

$$\Rightarrow J_n = J_p$$

$$\Rightarrow nq\mu_n E = pq\mu_p E$$

$$\Rightarrow \frac{\mu_n}{\mu_p} = \frac{p}{n}$$

$$\Rightarrow \frac{\mu_n}{\mu_p} = \frac{p^2}{n_i^2} = \left(\frac{p}{n_i}\right)^2$$

$$\Rightarrow \frac{\mu_n}{\mu_p} = \left(\frac{1.5n_i}{n_i}\right)^2 = 2.25$$

Hence, the correct answer is 2.25.

GATE 2023 [Afternoon Session] Electronics & Communication Engineering

$$P_0 = \frac{1}{2} \times \int_0^\infty e^{-2t} dt = \frac{1}{2} \times \left(\frac{e^{-2t}}{-2}\right)_0^\infty = 0.25 \text{ W}$$

Hence, the correct answer is 0.25.

Question 60

Electromagnetic Theory : Plane Wave Propagation

A transparent dielectric coating is applied to glass ($\varepsilon_r = 4$, $\mu_r = 1$) to eliminate the reflection of red light ($\lambda_0 = 0.75 \,\mu\text{m}$). The minimum thickness of the dielectric coating, in μm , that can be used is _____ (rounded off to two decimal places).

Ans. 0.133 (0.12 to 0.14)

Sol. Given :
$$\varepsilon_r = 4$$
, $\mu_r = 1$ and $\lambda_0 = 0.75 \ \mu m$.

For no reflection to occur, impedance of glass and dielectric must be matched.

$$\eta_{\text{dielectric}} = \sqrt{\eta_{glass}} \times \eta_0$$

$$\frac{120\pi}{\sqrt{\epsilon_{\text{rdielectric}}}} = \sqrt{\frac{120\pi}{\sqrt{4}}} \times 120\pi$$

$$\Rightarrow \frac{120\pi}{\sqrt{\epsilon_{\text{rdielectric}}}} = \frac{120\pi}{\sqrt{2}}$$

$$\sqrt{-rdielectric}$$

 $\Rightarrow \in_{\text{rdielectric}} = 2$

Also impedance matching will be seen if thickness of dielectric is

$$\Rightarrow t = \frac{0.75 \times 10^{-6}}{4 \times \sqrt{2}} = 0.133 \,\mu\text{m}$$

Hence, the correct answer is 0.133.

Question 61

Electronic Devices & Circuits : Basic Semiconductor Physics

In a semiconductor device, the Fermi-energy level is 0.35 eV above the valence band energy. The effective density of states in the valence band at T = 300 K is 1×10^{19} cm⁻³. The thermal equilibrium hole concentrate in silicon at 400 K is _____ ×10^{13} cm⁻³ (rounded off to two decimal places). Given : kT at 300 K is 0.026 eV.

Ans. 69.87

Sol. Given : $E_F - E_V = 0.35 \text{ eV}$ $N_V (T = 300^{\circ} K) = 1 \times 10^{19} \text{ cm}^{-3}$ We know that, $V_T = \frac{T}{11,600}$ $\Rightarrow \frac{V_{T1}}{V_T} = \frac{T_1}{1100}$

$$\Rightarrow \frac{T_1}{V_{T2}} = \frac{1}{T_2}$$

GATE 2023 [Afternoon Session] Electronics & Communication Engineering 🝸 unacademy

🙈 GATE ACADEMY®

$$\Rightarrow \frac{0.026}{V_{T2}} = \frac{300}{400}$$

$$\Rightarrow V_{T2} = \frac{0.026 \times 4}{3} = 0.035 \text{ V}$$

$$\Rightarrow kT_2 = 0.035 \text{ eV}$$

Also $N_V \propto T^{\frac{3}{2}}$

$$\Rightarrow \frac{N_{V_1}}{N_{V_2}} = \left(\frac{T_1}{T_2}\right)^{\frac{3}{2}} = \left(\frac{3}{4}\right)^{\frac{3}{2}}$$

$$\Rightarrow \frac{N_{V_1}}{N_{V_2}} = 0.6495$$

$$\Rightarrow N_{V_2} = \frac{N_{V_1}}{0.6495} = \frac{1 \times 10^{19}}{0.6495}$$

$$\Rightarrow N_V (T = 400^\circ K) = 1.539 \times 10^{19}$$

 \therefore Hole concentration at 400[°]K will be

$$P = N_{V_2} e^{-\left(\frac{E_F - E_V}{kT_2}\right)} = 1.539 \times 10^{19} e^{-\frac{0.35}{0.035}} = 69.87 \times 10^{13} \,\mathrm{cm}^{-3}$$

Hence, the correct answer is 69.87.

Question 62

Analog Electronics : Operational Amplifiers

A sample and hold circuit is implemented using a resistive switch and a capacitor with a time constant of 1 μ s. The time for the sampling switch to stay closed to charge a capacitor adequately to a full-scale voltage of 1V with 12-bit accuracy is ______ μ s (rounded off to two decimal places).

Ans. 8.317 (8.30 to 8.34)

Sol. Given : $V_{FS} = 1$ V, n = 12

Time constant $\tau = 1 \mu sec$

$$e^{-\frac{t}{\tau}} = \frac{V_{FS}}{2^n}$$
$$-\frac{t}{\tau} = \ln\left(\frac{V_{FS}}{2^n}\right)$$
$$\frac{t}{\tau} = \ln\left(\frac{2^n}{V_{FS}}\right)$$
$$t = \tau \ln\left(\frac{2^n}{V_{FS}}\right) = 10^{-6} \ln\left(\frac{2^{12}}{1}\right) = 8.317 \,\mu\text{sec}$$

Hence, the correct answer is 8.317.

GE GATE 2023 [Afternoon Session]

52 Electronics & Communication Engineering

🝸 unacademy

Sol. Given circuit can be drawn as shown below

From the above figure,

$$I_1 = \frac{10}{1} \times 1 \text{ mA} = 10 \text{ mA}$$

 $I_2 = 7 \times 1 \text{ mA} = 7 \text{ mA}$
 $I_3 = \frac{5}{10} \times 10 \text{ mA} = 5 \text{ mA}$

KCL at node $x \Rightarrow I = I_2 - I_3 \Rightarrow I = 7 \text{ mA} - 5 \text{ mA} = 2 \text{ mA}$

 $\therefore V_L = 2 \text{ mA} \times 1 \text{ k}\Omega = 2 \text{ V}$

Hence, the correct answer is 2.

Question 65

Communication Systems : Information Theory & Error Correction

The frequency of occurrence of 8 symbols (a-h) is shown in the table below. A symbol is chosen and it is determined by asking a series of "yes/no" questions which are assumed to be truthfully answered. The average number of questions when asked in the most efficient sequence, to determine the chosen symbol, is (rounded off to two decimal places).

						-	-	land and the second sec
Symbols	а	b	С	d	е	f	g	h
E. C.	1	1	1	1	1	1	1	1
Frequency of occurrence	$\overline{2}$	4	8	16	32	64	128	128

Ans. 1.98 (1.97 to 1.99)

Sol. Given data is as shown below,

Symbols	а	b	с	d	е	f	g	h
Frequency of occurrence	1	1	1	1	1	1	1	1
	$\overline{2}$	4	8	16	$\overline{32}$	64	128	128

Average number of questions asked in the most efficient sequence will be equal to the entropy H(x)

$$H(x) = \sum_{K=1}^{8} P_K \log_2 \frac{1}{P_K}$$

$$H(x) = \frac{1}{2} \log_2 2 + \frac{1}{4} \log_2 4 + \frac{1}{8} \log_2 8 + \frac{1}{16} \log_2 16 + \frac{1}{32} \log_2 32 + \frac{1}{64} \log_2 64 + \frac{1}{128} \log_2 128 + \frac{1}{128} \log_2 128$$

$$H(x) = 1.98$$

Hence, the correct answer is 1.98.